On the 3D Navier-Stokes equations with a linear multiplicative noise and prescribed energy

被引:2
作者
Berkemeier, Stefanie Elisabeth [1 ]
机构
[1] Univ Bielefeld, Fac Math, D-33501 Bielefeld, Germany
基金
欧洲研究理事会;
关键词
Stochastic Navier-Stokes equations; Multiplicative noise; Kinetic energy; Analytically weak solutions; Probabilistically strong solutions; Non-uniqueness; Convex integration; EULER; POSEDNESS;
D O I
10.1007/s00028-023-00884-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a prescribed deterministic kinetic energy, we use convex integration to construct analytically weak and probabilistically strong solutions to the 3D incompressible Navier-Stokes equations driven by a linear multiplicative stochastic forcing. These solutions are defined up to an arbitrarily large stopping time and have deterministic initial values, which are part of the construction. Moreover, by a suitable choice of different kinetic energies which coincide on an interval close to time 0, we obtain non-uniqueness.
引用
收藏
页数:55
相关论文
共 38 条
[11]  
Chen WQ, 2022, Arxiv, DOI arXiv:2208.08321
[12]  
Cherny AS, 2001, THEOR PROBAB APPL+, V46, P406, DOI 10.1137/S0040585X97979093
[13]   Non-uniqueness and h-Principle for Holder-Continuous Weak Solutions of the Euler Equations [J].
Daneri, Sara ;
Szekelyhidi, Laszlo, Jr. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 224 (02) :471-514
[14]   Dissipative continuous Euler flows [J].
De Lellis, Camillo ;
Szekelyhidi, Laszlo, Jr. .
INVENTIONES MATHEMATICAE, 2013, 193 (02) :377-407
[15]   The Euler equations as a differential inclusion [J].
De Lellis, Camillo ;
Szekelyhidi, Laszlo, Jr. .
ANNALS OF MATHEMATICS, 2009, 170 (03) :1417-1436
[16]   On Admissibility Criteria for Weak Solutions of the Euler Equations [J].
De Lellis, Camillo ;
Szekelyhidi, Laszlo, Jr. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 195 (01) :225-260
[17]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573
[18]   GLOBAL WELL-POSEDNESS OF THE 3D NAVIER-STOKES EQUATIONS PERTURBED BY A DETERMINISTIC VECTOR FIELD [J].
Flandoli, Franco ;
Hofmanova, Martina ;
Luo, Dejun ;
Nilssen, Torstein .
ANNALS OF APPLIED PROBABILITY, 2022, 32 (04) :2568-2586
[19]   High mode transport noise improves vorticity blow-up control in 3D Navier-Stokes equations [J].
Flandoli, Franco ;
Luo, Dejun .
PROBABILITY THEORY AND RELATED FIELDS, 2021, 180 (1-2) :309-363
[20]   GLOBAL-IN-TIME PROBABILISTICALLY STRONG AND MARKOV SOLUTIONS TO STOCHASTIC 3D NAVIER-STOKES EQUATIONS: EXISTENCE AND NONUNIQUENESS [J].
Hofmanova, Martina ;
Zhu, Rongchan ;
Zhu, Xiangchan .
ANNALS OF PROBABILITY, 2023, 51 (02) :524-579