On the 3D Navier-Stokes equations with a linear multiplicative noise and prescribed energy

被引:2
作者
Berkemeier, Stefanie Elisabeth [1 ]
机构
[1] Univ Bielefeld, Fac Math, D-33501 Bielefeld, Germany
基金
欧洲研究理事会;
关键词
Stochastic Navier-Stokes equations; Multiplicative noise; Kinetic energy; Analytically weak solutions; Probabilistically strong solutions; Non-uniqueness; Convex integration; EULER; POSEDNESS;
D O I
10.1007/s00028-023-00884-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a prescribed deterministic kinetic energy, we use convex integration to construct analytically weak and probabilistically strong solutions to the 3D incompressible Navier-Stokes equations driven by a linear multiplicative stochastic forcing. These solutions are defined up to an arbitrarily large stopping time and have deterministic initial values, which are part of the construction. Moreover, by a suitable choice of different kinetic energies which coincide on an interval close to time 0, we obtain non-uniqueness.
引用
收藏
页数:55
相关论文
共 38 条
[1]  
Aleksandrov A. A., 1974, Journal of Engineering Physics, V27, P1235, DOI 10.1007/BF00864022
[2]  
[Anonymous], 1955, Indagationes Mathematicae (Proceedings), V58, P683
[3]  
[Anonymous], 1983, Monogr. Math., DOI [10.1007/978-3-0346-0416-1, DOI 10.1007/978-3-0346-0416-1]
[4]  
[Anonymous], 2016, Partial Differential Equations
[5]   ON SOLVABILITY AND ILL-POSEDNESS OF THE COMPRESSIBLE EULER SYSTEM SUBJECT TO STOCHASTIC FORCES [J].
Breit, Dominic ;
Feireisl, Eduard ;
Hofmanova, Martina .
ANALYSIS & PDE, 2020, 13 (02) :371-402
[6]   Convex integration and phenomenologies in turbulence [J].
Buckmaster, Tristan ;
Vicol, Vlad .
EMS SURVEYS IN MATHEMATICAL SCIENCES, 2019, 6 (1-2) :173-263
[7]   Nonuniqueness of weak solutions to the Navier-Stokes equation [J].
Buckmaster, Tristan ;
Vicol, Vlad .
ANNALS OF MATHEMATICS, 2019, 189 (01) :101-144
[8]   Onsager's Conjecture for Admissible Weak Solutions [J].
Buckmaster, Tristan ;
De Lellis, Camillo ;
Szekelyhidi, Laszlo, Jr. ;
Vicol, Vlad .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2019, 72 (02) :229-274
[9]   Anomalous dissipation for 1/5-Holder Euler flows [J].
Buckmaster, Tristan ;
De Lellis, Camillo ;
Isett, Philip ;
Szekelyhidi, Laszlo, Jr. .
ANNALS OF MATHEMATICS, 2015, 182 (01) :127-172
[10]   Non Uniqueness of Power-Law Flows [J].
Burczak, Jan ;
Modena, Stefano ;
Szekelyhidi, Laszlo .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 388 (01) :199-243