Real-Time Point Cloud Object Detection via Voxel-Point Geometry Abstraction

被引:11
作者
Shi, Guangsheng [1 ]
Wang, Ke [1 ]
Li, Ruifeng [1 ]
Ma, Chao [2 ]
机构
[1] Harbin Inst Technol, State Key Lab Robot & Syst, Harbin 150001, Peoples R China
[2] Shanghai Jiao Tong Univ, AI Inst, MoE Key Lab Artificial Intelligence, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Three-dimensional displays; Proposals; Point cloud compression; Feature extraction; Object detection; Representation learning; Geometry; 3D object detection; deep learning; autonomous driving; point clouds; NETWORKS; VEHICLE;
D O I
10.1109/TITS.2023.3259582
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Recent advances in 3D object detection typically learn voxel-based or point-based representations on point clouds. Point-based methods preserve precise point positions but incur high computational load, whereas voxel-based methods rasterize unordered points into voxel grids efficiently but give rise to an accuracy bottleneck. To take advantage of voxel-and point-based representations, we develop an effective and efficient 3D object detector via a novel voxel-point geometry abstraction scheme. Our motivation is to use coarse voxel representation to accelerate proposal generation while using precise point representation to facilitate proposal refinement. For voxel representation learning, we propose a context enrichment module with a novel 3D sparse interpolation layer to augment raw points with multi-scale context. We further develop a point-based RoI pooling module with explicit position augmentation for proposal refinement. Extensive experiments on the widely used KITTI Dataset and the latest Waymo Open Dataset show that the proposed algorithm outperforms state-of-the-art point-voxel-based methods while running at 24 FPS on the TITAN XP GPU.
引用
收藏
页码:5971 / 5982
页数:12
相关论文
共 58 条
  • [1] A Survey on 3D Object Detection Methods for Autonomous Driving Applications
    Arnold, Eduardo
    Al-Jarrah, Omar Y.
    Dianati, Mehrdad
    Fallah, Saber
    Oxtoby, David
    Mouzakitis, Alex
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2019, 20 (10) : 3782 - 3795
  • [2] Babayan P. V., 2019, 2019 8 MED C EMB COM, P1
  • [3] Bewley Alex, 2020, RANGE CONDITIONED DI
  • [4] Deep Neural Network Based Vehicle and Pedestrian Detection for Autonomous Driving: A Survey
    Chen, Long
    Lin, Shaobo
    Lu, Xiankai
    Cao, Dongpu
    Wu, Hangbin
    Guo, Chi
    Liu, Chun
    Wang, Fei-Yue
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (06) : 3234 - 3246
  • [5] Chen X., 2017, PROC CVPR IEEE, V1, P3, DOI [DOI 10.1109/CVPR.2017.691, 10.1109/CVPR.2017.691]
  • [6] Chen YL, 2019, IEEE I CONF COMP VIS, P9774, DOI [10.1109/iccv.2019.00987, 10.1109/ICCV.2019.00987]
  • [7] Deep Learning for Image and Point Cloud Fusion in Autonomous Driving: A Review
    Cui, Yaodong
    Chen, Ren
    Chu, Wenbo
    Chen, Long
    Tian, Daxin
    Li, Ying
    Cao, Dongpu
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (02) : 722 - 739
  • [8] Obstacle Detection Using a Facet-Based Representation from 3-D LiDAR Measurements
    Dulau, Marius
    Oniga, Florin
    [J]. SENSORS, 2021, 21 (20)
  • [9] Deep Multi-Modal Object Detection and Semantic Segmentation for Autonomous Driving: Datasets, Methods, and Challenges
    Feng, Di
    Haase-Schutz, Christian
    Rosenbaum, Lars
    Hertlein, Heinz
    Glaser, Claudius
    Timm, Fabian
    Wiesbeck, Werner
    Dietmayer, Klaus
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (03) : 1341 - 1360
  • [10] Vision meets robotics: The KITTI dataset
    Geiger, A.
    Lenz, P.
    Stiller, C.
    Urtasun, R.
    [J]. INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2013, 32 (11) : 1231 - 1237