CVIK: A MATLAB-based cluster validity index toolbox for automatic data clustering

被引:3
作者
Jose-Garcia, Adan [1 ]
Gomez-Flores, Wilfrido [2 ]
机构
[1] Univ Lille, CNRS, Cent Lille, UMR 9189,CRIStAL, F-59000 Lille, France
[2] Ctr Invest & Estudios Avanzados IPN, Unidad Tamaulipas, Cd Victoria 87130, Tamaulipas, Mexico
关键词
Clustering; Cluster validity index; Automatic clustering; R-PACKAGE; VALIDATION;
D O I
10.1016/j.softx.2023.101359
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present CVIK, a MATLAB-based toolbox for assisting the process of cluster analysis applications. This toolbox aims to implement 28 cluster validity indices (CVIs) for measuring clustering quality available to data scientists, researchers, and practitioners. CVIK facilitates implementing the entire pipeline of automatic clustering in two approaches: (i) evaluating candidate clustering solutions from classical algorithms, in which the number of clusters increases gradually, and (ii) assessing potential solutions in evolutionary clustering algorithms using single- and multi-objective optimization methods. This toolbox also implements distinct proximity measures to estimate data similarity, and the CVIs are capable of processing both feature data and relational data. The source code and examples can be found in this GitHub repository: https://github.com/adanjoga/cvik-toolbox. (c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:8
相关论文
共 39 条
  • [1] Unsupervised Medical Image Segmentation Based on the Local Center of Mass
    Aganj, Iman
    Harisinghani, Mukesh G.
    Weissleder, Ralph
    Fischl, Bruce
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [2] An extensive comparative study of cluster validity indices
    Arbelaitz, Olatz
    Gurrutxaga, Ibai
    Muguerza, Javier
    Perez, Jesus M.
    Perona, Inigo
    [J]. PATTERN RECOGNITION, 2013, 46 (01) : 243 - 256
  • [3] Baker C, 2019, VALIDCLUST
  • [4] Balasko B., 2005, Fuzzy clustering and data analysis toolbox
  • [5] How Many Clusters: A Validation Index for Arbitrary-Shaped Clusters
    Baya, Ariel E.
    Granitto, Pablo M.
    [J]. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2013, 10 (02) : 401 - 414
  • [6] clValid: An R package for cluster validation
    Brock, Guy
    Datta, Susmita
    Pihur, Vasyl
    Datta, Somnath
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2008, 25 (04): : 1 - 22
  • [7] Calinski T., 1974, COMMUN STAT-THEOR M, V3, P1, DOI [10.1080/03610927408827101, DOI 10.1080/03610927408827101]
  • [8] Cebeci Z., 2020, Sakarya University Journal of Computer and Information Sciences, V3, P11, DOI 10.35377/saucis.03.01.664560
  • [9] Charrad M, 2014, J STAT SOFTW, V61, P1
  • [10] A Novel Cluster Validity Index Based on Local Cores
    Cheng, Dongdong
    Zhu, Qingsheng
    Huang, Jinlong
    Wu, Quanwang
    Yang, Lijun
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2019, 30 (04) : 985 - 999