Tutte Embeddings of Tetrahedral Meshes

被引:7
作者
Alexa, Marc [1 ]
机构
[1] TU Berlin, Fac Comp Sci & Elect Engn, Sekretariat MAR 6-6, Marchstr 6, D-10587 Berlin, Germany
基金
欧洲研究理事会;
关键词
Tetrahedral mesh; Tutte embedding; Convex combination; Linkless embedding; Harmonic map; GRAPHS;
D O I
10.1007/s00454-023-00494-0
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Tutte's embedding theorem states that every 3-connected graph without a K5- or K(3,3 )minor (i.e., a planar graph) is embedded in the plane if the outer face is in convex position and the interior vertices are convex combinations of their neighbors. We show that this result extends to simply connected tetrahedral meshes in a natural way: for the tetrahedral mesh to be embedded if the outer polyhedron is in convex position and the interior vertices are convex combination of their neighbors it is sufficient (but not necessary) that the graph of the tetrahedral mesh contains no K-6 and no K-3,K-3,K-1, and all triangles incident on three boundary vertices are boundary triangles.
引用
收藏
页码:197 / 207
页数:11
相关论文
共 18 条
[1]   Hyperbolic Orbifold Tutte Embeddings [J].
Aigerman, Noam ;
Lipman, Yaron .
ACM TRANSACTIONS ON GRAPHICS, 2016, 35 (06)
[2]   Orbifold Tutte Embeddings [J].
Aigerman, Noam ;
Lipman, Yaron .
ACM TRANSACTIONS ON GRAPHICS, 2015, 34 (06)
[3]  
[Anonymous], 1922, Encycl. Math. Wiss.
[4]  
Chilakamarri Kiran., 1995, Congressus Numerantium, P129
[5]   Interactively Controlled Quad Remeshing of High Resolution 3D Models [J].
Ebke, Hans-Christian ;
Schmidt, Patrick ;
Campen, Marcel ;
Kobbelt, Leif .
ACM TRANSACTIONS ON GRAPHICS, 2016, 35 (06)
[6]  
FARY I, 1948, ACTA SCI MATH SZEGED, V11, P229
[7]   Convex combination maps over triangulations, tilings, and tetrahedral meshes [J].
Floater, Michael S. ;
Pham-Trong, Valerie .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2006, 25 (04) :347-356
[8]  
Floater MS, 2003, MATH COMPUT, V72, P685, DOI 10.1090/S0025-5718-02-01466-7
[9]  
Geelen J., 2012, DRAW GRAPH
[10]   Discrete one-forms on meshes and applications to 3D mesh parameterization [J].
Gortler, SJ ;
Gotsman, C ;
Thurston, D .
COMPUTER AIDED GEOMETRIC DESIGN, 2006, 23 (02) :83-112