Low-Temperature Potassium Batteries Enabled by Electric and Thermal Field Regulation

被引:28
|
作者
Liu, Yanfang [1 ]
Shi, Yating [2 ,3 ,4 ]
Gao, Caitian [1 ,5 ]
Shi, Zude
Ding, Hongbo [1 ]
Feng, Yanhong [1 ]
He, Yongmin [4 ]
Sha, Junwei [2 ,3 ]
Zhou, Jiang [6 ]
Lu, Bingan [1 ]
机构
[1] Hunan Univ Changsha, Sch Phys & Elect, Changsha, Peoples R China
[2] Tianjin Univ, Sch Mat Sci & Engn, Tianjin 300350, Peoples R China
[3] Tianjin Univ, Tianjin Key Lab Composite & Funct Mat, Tianjin 300350, Peoples R China
[4] Hunan Univ, Coll Chem & Chem Engn, State Key Lab Chemo Biosensing & Chemometr, Changsha 410082, Peoples R China
[5] Hunan Univ, Greater Bay Area Inst Innovat, Guangdong 511300, Peoples R China
[6] Cent South Univ, Sch Mat Sci & Engn, Changsha 410083, Peoples R China
基金
中国国家自然科学基金;
关键词
Electric Field Regulation; Low-Temperature Potassium Batteries; Thermal Field Regulation; METAL;
D O I
10.1002/anie.202300016
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Recharging batteries operate at sub-zero temperature is usually limited by the slow ion diffusion and uneven charge distribution at low temperature. Here, we report a strategy to regulate electric field and thermal field simultaneously, creating a fast and uniform deposition surroundings for potassium ion in potassium metal batteries (PMBs). This regulation is achieved by using a highly ordered 1D nanoarray electrode which provides a dense and flat surface for uniforming the electric field and high thermal conductivity for reducing the temperature fluctuation. Consequently, this electrode could achieve high-areal capacity of 10 mAh cm(-2). Besides, the dependence of potassium nucleation on temperature is unveiled. Furthermore, a full-cell could steady operate with over 80 % of its room-temperature capacity at -20 degrees C. Those respectable performances demonstrate that this strategy is valid, potentially providing guidelines for the rational design of advanced electrodes toward PMBs.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] INFLUENCE OF A MAGNETIC-FIELD ON THE THERMAL EMF OF LOW-TEMPERATURE THERMOCOUPLES
    ABILOV, GS
    ALSHIN, BI
    BEILIN, VM
    MEDVEDEVA, LA
    FLEROV, NG
    INSTRUMENTS AND EXPERIMENTAL TECHNIQUES, 1983, 26 (01) : 239 - 241
  • [42] Low-temperature Li-S batteries enabled by all amorphous conversion process of organosulfur cathode
    Wang, Zhenkang
    Shen, Xiaowei
    Li, Sijie
    Wu, Yuxuan
    Yang, Tingzhou
    Liu, Jie
    Qian, Tao
    Yan, Chenglin
    JOURNAL OF ENERGY CHEMISTRY, 2022, 64 : 496 - 502
  • [43] Low-temperature Li-S batteries enabled by all amorphous conversion process of organosulfur cathode
    Zhenkang Wang
    Xiaowei Shen
    Sijie Li
    Yuxuan Wu
    Tingzhou Yang
    Jie Liu
    Tao Qian
    Chenglin Yan
    Journal of Energy Chemistry, 2022, 64 (01) : 496 - 502
  • [44] Features of Intrinsic Electric Field Formation in Low-Temperature Oxygen–Methane Plasma
    A. V. Rudinskii
    D. A. Yagodnikov
    S. V. Ryzhkov
    V. V. Onufriev
    Technical Physics Letters, 2021, 47 : 520 - 523
  • [46] Low-Temperature Sodium-Sulfur Batteries Enabled by Ionic Liquid in Localized High Concentration Electrolytes
    Guo, Dong
    Wang, Jiaao
    Cui, Zehao
    Shi, Zixiong
    Henkelman, Graeme
    Alshareef, Husam N.
    Manthiram, Arumugam
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (51)
  • [47] LOW-TEMPERATURE BEHAVIOR OF POTASSIUM BORATE GLASSES
    MACDONALD, WM
    ANDERSON, AC
    SCHROEDER, J
    PHYSICAL REVIEW B, 1985, 32 (02) : 1208 - 1211
  • [48] LOW-TEMPERATURE ELECTRICAL AND THERMAL RESISTIVITIES OF POTASSIUM - DEVIATIONS FROM MATTHIESSENS-RULE
    JUMPER, WD
    LAWRENCE, WE
    PHYSICAL REVIEW B, 1977, 16 (08): : 3314 - 3321
  • [49] DIFFUSION MODEL AND LOW-TEMPERATURE RESISTIVITY OF POTASSIUM
    LAWRENCE, WE
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1973, 18 (03): : 309 - 309
  • [50] Low-temperature heat capacity of tetraborates of potassium
    Gorbunov, V.E.
    Gavrichev, K.S.
    Golushina, L.N.
    Totrova, G.A.
    Plakhotnik, V.N.
    Tul'chinskij, V.B.
    Kovtun, Yu.V.
    Zhurnal Fizicheskoj Khimii, 1993, 67 (03):