Low-Temperature Potassium Batteries Enabled by Electric and Thermal Field Regulation

被引:28
|
作者
Liu, Yanfang [1 ]
Shi, Yating [2 ,3 ,4 ]
Gao, Caitian [1 ,5 ]
Shi, Zude
Ding, Hongbo [1 ]
Feng, Yanhong [1 ]
He, Yongmin [4 ]
Sha, Junwei [2 ,3 ]
Zhou, Jiang [6 ]
Lu, Bingan [1 ]
机构
[1] Hunan Univ Changsha, Sch Phys & Elect, Changsha, Peoples R China
[2] Tianjin Univ, Sch Mat Sci & Engn, Tianjin 300350, Peoples R China
[3] Tianjin Univ, Tianjin Key Lab Composite & Funct Mat, Tianjin 300350, Peoples R China
[4] Hunan Univ, Coll Chem & Chem Engn, State Key Lab Chemo Biosensing & Chemometr, Changsha 410082, Peoples R China
[5] Hunan Univ, Greater Bay Area Inst Innovat, Guangdong 511300, Peoples R China
[6] Cent South Univ, Sch Mat Sci & Engn, Changsha 410083, Peoples R China
基金
中国国家自然科学基金;
关键词
Electric Field Regulation; Low-Temperature Potassium Batteries; Thermal Field Regulation; METAL;
D O I
10.1002/anie.202300016
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Recharging batteries operate at sub-zero temperature is usually limited by the slow ion diffusion and uneven charge distribution at low temperature. Here, we report a strategy to regulate electric field and thermal field simultaneously, creating a fast and uniform deposition surroundings for potassium ion in potassium metal batteries (PMBs). This regulation is achieved by using a highly ordered 1D nanoarray electrode which provides a dense and flat surface for uniforming the electric field and high thermal conductivity for reducing the temperature fluctuation. Consequently, this electrode could achieve high-areal capacity of 10 mAh cm(-2). Besides, the dependence of potassium nucleation on temperature is unveiled. Furthermore, a full-cell could steady operate with over 80 % of its room-temperature capacity at -20 degrees C. Those respectable performances demonstrate that this strategy is valid, potentially providing guidelines for the rational design of advanced electrodes toward PMBs.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Low-Temperature and High-Rate Rechargeable Aluminum Batteries Enabled by Ternary Eutectic Electrolytes
    Vadthya, Raju
    Fetrow, Christopher
    Oladoyin, Olumide
    Wu, James
    Ivanov, Sergei
    Wang, You
    Chen, Dongchang
    Zhou, Xiao-Dong
    Wei, Shuya
    CHEMSUSCHEM, 2025, 18 (02)
  • [32] LOW-TEMPERATURE THERMAL ANNEALING IN FAST NEUTRON-IRRADIATED POTASSIUM PERMANGANATE
    OWENS, CW
    LECINGTON, WC
    RADIOCHIMICA ACTA, 1975, 22 (1-2) : 81 - 82
  • [33] INFLUENCE OF THE ELECTRIC-FIELD ON THE LOW-TEMPERATURE THERMAL-DECOMPOSITION OF AMMONIUM-PERCHLORATE POLYSTYRENE PROPELLANT
    KISHORE, K
    PAIVERNEKER, VR
    SUNITHA, MR
    COMBUSTION AND FLAME, 1982, 46 (01) : 1 - 6
  • [34] Exploring High-Voltage Sulfate Cathodes for Low-Temperature Thermal Batteries
    Yu, Huayu
    Liu, Yang
    Zhao, Yaxu
    Wang, Yan
    Zhu, Jiajun
    Yang, Wulin
    Zhou, Lingping
    Fu, Licai
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2024, 171 (05)
  • [35] The effect of low-temperature starting on the thermal safety of lithium-ion batteries
    Ma, Wenbin
    Yang, Xiaoyu
    Tao, Xin
    Xie, Song
    ENERGY, 2024, 311
  • [36] LOW-TEMPERATURE THERMAL INSULANTS
    ANTONINI, G
    PAIN, JP
    REVUE DE PHYSIQUE APPLIQUEE, 1988, 23 (11): : 1755 - 1760
  • [37] LOW-TEMPERATURE THERMAL SWITCH
    SHEIKH, II
    TOWNSEND, PD
    JOURNAL OF PHYSICS E-SCIENTIFIC INSTRUMENTS, 1973, 6 (12): : 1170 - 1170
  • [38] LOW-TEMPERATURE THERMAL PRECIPITATOR
    VIRIN, ZL
    MURASHKE.FI
    INDUSTRIAL LABORATORY, 1968, 34 (02): : 292 - &
  • [39] LOW-TEMPERATURE PERFORMANCE OF ELECTRIC HANDS
    CALDWELL, RR
    SCOTT, RN
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 1979, 17 (06) : 779 - 780
  • [40] INFLUENCE OF A MAGNETIC FIELD ON THE THERMAL EMF OF LOW-TEMPERATURE THERMOCOUPLES.
    Abilov, G.S.
    Al'shin, B.I.
    Beilin, V.M.
    Medvedeva, L.A.
    Flerov, N.G.
    1600, (26):