Low-Temperature Potassium Batteries Enabled by Electric and Thermal Field Regulation

被引:28
|
作者
Liu, Yanfang [1 ]
Shi, Yating [2 ,3 ,4 ]
Gao, Caitian [1 ,5 ]
Shi, Zude
Ding, Hongbo [1 ]
Feng, Yanhong [1 ]
He, Yongmin [4 ]
Sha, Junwei [2 ,3 ]
Zhou, Jiang [6 ]
Lu, Bingan [1 ]
机构
[1] Hunan Univ Changsha, Sch Phys & Elect, Changsha, Peoples R China
[2] Tianjin Univ, Sch Mat Sci & Engn, Tianjin 300350, Peoples R China
[3] Tianjin Univ, Tianjin Key Lab Composite & Funct Mat, Tianjin 300350, Peoples R China
[4] Hunan Univ, Coll Chem & Chem Engn, State Key Lab Chemo Biosensing & Chemometr, Changsha 410082, Peoples R China
[5] Hunan Univ, Greater Bay Area Inst Innovat, Guangdong 511300, Peoples R China
[6] Cent South Univ, Sch Mat Sci & Engn, Changsha 410083, Peoples R China
基金
中国国家自然科学基金;
关键词
Electric Field Regulation; Low-Temperature Potassium Batteries; Thermal Field Regulation; METAL;
D O I
10.1002/anie.202300016
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Recharging batteries operate at sub-zero temperature is usually limited by the slow ion diffusion and uneven charge distribution at low temperature. Here, we report a strategy to regulate electric field and thermal field simultaneously, creating a fast and uniform deposition surroundings for potassium ion in potassium metal batteries (PMBs). This regulation is achieved by using a highly ordered 1D nanoarray electrode which provides a dense and flat surface for uniforming the electric field and high thermal conductivity for reducing the temperature fluctuation. Consequently, this electrode could achieve high-areal capacity of 10 mAh cm(-2). Besides, the dependence of potassium nucleation on temperature is unveiled. Furthermore, a full-cell could steady operate with over 80 % of its room-temperature capacity at -20 degrees C. Those respectable performances demonstrate that this strategy is valid, potentially providing guidelines for the rational design of advanced electrodes toward PMBs.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] LOW-TEMPERATURE THERMAL MAGNETORESISTANCE OF POTASSIUM
    NEWROCK, RS
    MAXFIELD, BW
    SOLID STATE COMMUNICATIONS, 1973, 13 (07) : 927 - 930
  • [2] Solvation Structure Dual-Regulator Enabled Multidimensional Improvement for Low-Temperature Potassium Ion Batteries
    Liu, Yanfang
    Fu, Hongwei
    Gao, Caitian
    Wen, Jie
    Guo, Ruoya
    Luo, Wendi
    Zhou, Jiawan
    Lu, Bingan
    ADVANCED ENERGY MATERIALS, 2024,
  • [3] Low-temperature anode-free potassium metal batteries
    Mengyao Tang
    Shuai Dong
    Jiawei Wang
    Liwei Cheng
    Qiaonan Zhu
    Yanmei Li
    Xiuyi Yang
    Lin Guo
    Hua Wang
    Nature Communications, 14
  • [4] Low-temperature anode-free potassium metal batteries
    Tang, Mengyao
    Dong, Shuai
    Wang, Jiawei
    Cheng, Liwei
    Zhu, Qiaonan
    Li, Yanmei
    Yang, Xiuyi
    Guo, Lin
    Wang, Hua
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [5] Low-Temperature and Fast-Charging Sodium Metal Batteries Enabled by Molecular Structure Regulation of Fluorinated Solvents
    Gao, Yiwen
    Wang, Zhicheng
    Tu, Haifeng
    Xue, Jiangyan
    Weng, Shixiao
    Lu, Suwan
    Liu, Lingwang
    Sun, Guochao
    Peng, Keyang
    Zhang, Xin
    Li, Dejun
    Liu, Yang
    Xu, Jingjing
    Li, Hong
    Wu, Xiaodong
    ADVANCED FUNCTIONAL MATERIALS, 2025, 35 (05)
  • [6] LOW-TEMPERATURE GALVANOMAGNETIC PHENOMENA IN INTENSE ELECTRIC FIELD
    BUDD, HF
    PHYSICAL REVIEW A-GENERAL PHYSICS, 1964, 134 (5A): : 1281 - &
  • [7] NOTE ON THE LOW-TEMPERATURE LATTICE THERMAL-CONDUCTIVITY OF POTASSIUM
    AMUNDSEN, T
    SALTER, JAM
    PHYSICAL REVIEW B, 1981, 23 (02): : 931 - 934
  • [8] Low-temperature thermal batteries using molten nitrate electrolytes
    Niu, Yongqiang
    Zhao, Yuhong
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2022, 26 (08) : 1549 - 1556
  • [9] Low-temperature thermal batteries using molten nitrate electrolytes
    Yongqiang Niu
    Yuhong Zhao
    Journal of Solid State Electrochemistry, 2022, 26 : 1549 - 1556
  • [10] Low-Temperature Carrot Cooking Supported by Pulsed Electric Field—DMA and DETA Thermal Analysis
    Jiří Blahovec
    Pavel Kouřím
    Martin Kindl
    Food and Bioprocess Technology, 2015, 8 : 2027 - 2035