Sn Anodes Protected by Intermetallic FeSn2 Layers for Long-lifespan Sodium-ion Batteries with High Initial Coulombic Efficiency of 93.8 %

被引:38
作者
Chen, Ming [1 ,2 ]
Xiao, Ping [3 ]
Yang, Ke [1 ,2 ]
Dong, Boxu [1 ,2 ]
Xu, Dong [1 ,2 ]
Yan, Changyu [1 ,2 ]
Liu, Xuejiao [1 ,2 ]
Zai, Jiantao [1 ,2 ]
Low, CheeTong John [4 ]
Qian, Xuefeng [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Shanghai Electrochem Energy Devices Res Ctr, Sch Chem & Chem Engn, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, State Key Lab Met Matrix Composites, Shanghai 200240, Peoples R China
[3] Nanjing Univ Chinese Med, Natl & Local Collaborat Engn Ctr Chinese Med Resou, Nanjing 210023, Peoples R China
[4] Univ Warwick, Energy Innovat Ctr, Warwick Electrochem Engn Grp, WMG, Warwick CV4 7AL, England
基金
中国国家自然科学基金;
关键词
Initial Coulombic Efficiency; Sn; Fesn(2)@C Anode; Sodium-Ion Batteries; Stability; HIGH-PERFORMANCE ANODE; HIGH-ENERGY-DENSITY; LITHIUM-ION; TIN; CARBON; NANOPARTICLES; INSERTION;
D O I
10.1002/anie.202219177
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
With a theoretical capacity of 847 mAh g(-1), Sn has emerged as promising anode material for sodium-ion batteries (SIBs). However, enormous volume expansion and agglomeration of nano Sn lead to low Coulombic efficiency and poor cycling stability. Herein, an intermetallic FeSn2 layer is designed via thermal reduction of polymer-Fe2O3 coated hollow SnO2 spheres to construct a yolk-shell structured Sn/FeSn2@C. The FeSn2 layer can relieve internal stress, avoid the agglomeration of Sn to accelerate the Na+ transport, and enable fast electronic conduction, which endows quick electrochemical dynamics and long-term stability. As a result, the Sn/FeSn2@C anode exhibits high initial Coulombic efficiency (ICE=93.8 %) and a high reversible capacity of 409 mAh g(-1) at 1 A g(-1) after 1500 cycles, corresponding to an 80 % capacity retention. In addition, NVP//Sn/FeSn2@C sodium-ion full cell shows outstanding cycle stability (capacity retaining rate of 89.7 % after 200 cycles at 1 C).
引用
收藏
页数:6
相关论文
共 44 条
[1]  
[Anonymous], 2022, ANGEW CHEM, V134
[2]  
[Anonymous], 2016, ANGEW CHEM, V128, P3469
[3]  
[Anonymous], 2015, ANGEW CHEM, V127, P3495
[4]   Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni [J].
Biesinger, Mark C. ;
Payne, Brad P. ;
Grosvenor, Andrew P. ;
Lau, Leo W. M. ;
Gerson, Andrea R. ;
Smart, Roger St. C. .
APPLIED SURFACE SCIENCE, 2011, 257 (07) :2717-2730
[5]   Sodium-Ion Battery Materials and Electrochemical Properties Reviewed [J].
Chayambuka, Kudakwashe ;
Mulder, Grietus ;
Danilov, Dmitri L. ;
Notten, Peter H. L. .
ADVANCED ENERGY MATERIALS, 2018, 8 (16)
[6]   One-pot formation of SnO2 hollow nanospheres and α-Fe2O3@SnO2 nanorattles with large void space and their lithium storage properties [J].
Chen, Jun Song ;
Li, Chang Ming ;
Zhou, Wen Wen ;
Yan, Qing Yu ;
Archer, Lynden A. ;
Lou, Xiong Wen .
NANOSCALE, 2009, 1 (02) :280-285
[7]   Porous carbon nanocages encapsulated with tin nanoparticles for high performance sodium-ion batteries [J].
Chen, Shuangqiang ;
Ao, Zhimin ;
Sun, Bing ;
Xie, Xiuqiang ;
Wang, Guoxiu .
ENERGY STORAGE MATERIALS, 2016, 5 :180-190
[8]   High-performance anode materials for Na-ion batteries [J].
Cheng, De-Liang ;
Yang, Li-Chun ;
Zhu, Min .
RARE METALS, 2018, 37 (03) :167-180
[9]   Challenges for Na-ion Negative Electrodes [J].
Chevrier, V. L. ;
Ceder, G. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (09) :A1011-A1014
[10]   Highly stable SnO2-Fe2O3-C hollow spheres for reversible lithium storage with extremely long cycle life [J].
Choi, Jonghyun ;
Kim, Won-Sik ;
Hong, Seong-Hyeon .
NANOSCALE, 2018, 10 (09) :4370-4376