Effect of external longitudinal magnetic field on the dynamics of pulsed plasma stream

被引:2
作者
Ahmed, A. [1 ]
Singha, S. [1 ]
Neog, N. K. [1 ]
Borthakur, T. K. [1 ]
机构
[1] Inst Plasma Res, Ctr Plasma Phys, Kamrup 782402, Assam, India
关键词
magnetic field; dynamics; pulsed; plasma stream; ACCELERATOR; SIMULATION; DENSITY;
D O I
10.1088/1402-4896/acb511
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A spectroscopic study is carried out to investigate pulsed plasma stream produced in a coaxial plasma accelerator under the influence of an external longitudinal magnetic field. The dynamics of Argon plasma stream that includes the excitations and emissions of plasma species and its different parameter variations on the application of an external longitudinal magnetic field are reported in this work. The behavior of the ionized and neutral species of argon plasma is studied from their intensity distribution profiles which indicate the occurrence of faster recombination as compared to the field-free case. The variation of pressure reveals a significant influence on the recombination and diffusion process of the plasma species. Moreover, the variation of cathode voltage leads to variation in input energy to the system which influences the ionization and excitation processes of the plasma species. A plasma density (N-e) jump is achieved from 10(21)-10(22) m(-3) at a relatively higher pressure similar to 8 bar plenum pressure in presence of the magnetic field. Saturation of the emissions and excitations of plasma species are revealed from the intensity profile and electron excitation temperature (T-exc) profile which occur at different pressure and voltage both for field and field-free cases. The electron temperature (T-e) is estimated using the FLYCHK code by comparing the simulated charge state distributions with the experimental findings. Using known parameters in the code, the different estimated T-e shows a linear and an exponential decrement respectively in the absence and presence of the magnetic field. Maximum T-e of 2.2 eV is reported which decreases to 1.51 eV at a significant increase of plasma density of 10(22) m(-3).
引用
收藏
页数:9
相关论文
共 24 条
[1]   Characteristics of plasma stream evolution in a pulsed plasma accelerator [J].
Ahmed, A. ;
Singha, S. ;
Borthakur, S. ;
Neog, N. K. ;
Borthakur, T. K. ;
Ghosh, J. .
PHYSICS OF PLASMAS, 2021, 28 (02)
[2]  
[Anonymous], NIST Atomic Spectra Database (ver.5.11), DOI [DOI 10.18434/T4W30F, 10.18434/T4W30F]
[3]   Material erosion and erosion products in disruption simulation experiments at the MK-200 UG facility [J].
Arkhipov, NI ;
Bakhtin, VP ;
Kurkin, SM ;
Safronov, VM ;
Toporkov, DA ;
Vasenin, SG ;
Zhitlukhin, AM ;
Würz, H .
FUSION ENGINEERING AND DESIGN, 2000, 49-50 :151-156
[4]   Design of a coaxial plasma accelerator for fusion relevant material studies [J].
Borthakur, S. ;
Talukdar, N. ;
Neog, N. K. ;
Borthakur, T. K. .
FUSION ENGINEERING AND DESIGN, 2017, 122 :131-139
[5]   200 kJ Pulsed Power System for Pulsed Plasma Device [J].
Borthakur, Suramoni ;
Talukdar, Nayan ;
Neog, Nirod Kumar ;
Borthakur, Tridip Kumar ;
Kumar, Rajesh ;
Verma, Rishi ;
Shyam, Anurag .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2017, 45 (07) :1769-1775
[6]  
Chung H.-K., 2005, High Energy Density Phys, V1, P3, DOI [10.1016/j.hedp.2005.07.001, DOI 10.1016/J.HEDP.2005.07.001]
[7]   Basics of plasma spectroscopy [J].
Fantz, U. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2006, 15 (04) :S137-S147
[8]   Influence of a magnetic field on plasma energy transfer to material surfaces in edge-localized mode simulation experiments with QSPA-M [J].
Garkusha, I. E. ;
Makhlai, V. A. ;
Petrov, Yu. V. ;
Chebotarev, V. V. ;
Yelisyeyev, D. V. ;
Kulik, N. V. ;
Staltsov, V. V. ;
Herashchenko, S. S. ;
Solyakov, D. G. ;
Ladygina, M. S. ;
Marchenko, A. K. ;
Aksenov, N. N. .
NUCLEAR FUSION, 2019, 59 (08)
[9]   Novel test-bed facility for PSI issues in fusion reactor conditions on the base of next generation QSPA plasma accelerator [J].
Garkusha, I. E. ;
Chebotarev, V. V. ;
Herashchenko, S. S. ;
Makhlaj, V. A. ;
Kulik, N. V. ;
Ladygina, M. S. ;
Marchenko, A. K. ;
Petrov, Yu. V. ;
Staltsov, V. V. ;
Shevchuk, P. V. ;
Solyakov, D. G. ;
Yelisyeyev, D. V. .
NUCLEAR FUSION, 2017, 57 (11)
[10]   Simulation of plasma-surface interactions in a fusion reactor by means of QSPA plasma streams: recent results and prospects [J].
Garkusha, I. E. ;
Aksenov, N. N. ;
Byrka, O. V. ;
Makhlaj, V. A. ;
Herashchenko, S. S. ;
Malykhin, S. V. ;
Petrov, Yu V. ;
Staltsov, V. V. ;
Surovitskiy, S. V. ;
Wirtz, M. ;
Linke, J. ;
Sadowski, M. J. ;
Skladnik-Sadowska, E. .
PHYSICA SCRIPTA, 2016, 91 (09)