TIME PERIODIC SOLUTION TO A MECHANOCHEMICAL MODEL IN BIOLOGICAL PATTERNS

被引:0
作者
Du, Chengxin [1 ]
Liu, Changchun [1 ]
机构
[1] Jilin Univ, Dept Math, Changchun 130012, Peoples R China
关键词
Mechanochemical model in biological patterns; time periodic solution; mild solution; integral equation; COUPLED GINZBURG-LANDAU; NAVIER-STOKES EQUATIONS; SYSTEM; FIELD;
D O I
10.3934/eect.2022039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a mechanochemical model in biological patterns in R-N, N >= 5. We first prove the existence of time periodic solution in BC(R; L-N,infinity(Omega)). Then we obtain the existence, uniqueness and regularity of the mild solution of the problem. Finally, we prove that the mild solution can become strong solution in BC(R; L-N,infinity(Omega)).
引用
收藏
页码:502 / 524
页数:23
相关论文
共 23 条
[1]  
Barraza OA, 1996, REV MAT IBEROAM, V12, P411
[2]   TIME PERIODIC SOLUTION TO A TWO-SPECIES CHEMOTAXIS-STOKES SYSTEM WITH p-LAPLACIAN DIFFUSION [J].
Du, Chengxin ;
Liu, Changchun .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (12) :4321-4345
[3]   On periodic solutions for one-phase and two-phase problems of the Navier-Stokes equations [J].
Eiter, Thomas ;
Kyed, Mads ;
Shibata, Yoshihiro .
JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (03) :2955-3014
[4]   Critical exponent for the global existence of solutions to a semilinear heat equation with degenerate coefficients [J].
Fujishima, Yohei ;
Kawakami, Tatsuki ;
Sire, Yannick .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (02)
[5]   TIME PERIODIC SOLUTION TO A COUPLED CHEMOTAXIS-FLUID MODEL WITH POROUS MEDIUM DIFFUSION [J].
Huang, Jiapeng ;
Jin, Chunhua .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (09) :5415-5439
[6]   Periodic pattern formation in the coupled chemotaxis-(Navier-)Stokes system with mixed nonhomogeneous boundary conditions [J].
Jin, Chunhua .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2020, 150 (06) :3121-3152
[7]   Periodic solutions of the Navier-Stokes equations in unbounded domains [J].
Kozono, H ;
Nakao, M .
TOHOKU MATHEMATICAL JOURNAL, 1996, 48 (01) :33-50
[8]   Asymptotic Dynamics of a New Mechanochemical Model in Biological Patterns [J].
Liu, Aibo ;
Liu, Changchun .
MATHEMATICAL MODELLING AND ANALYSIS, 2017, 22 (02) :252-269
[9]   TIME PERIODIC SOLUTIONS FOR A TWO-SPECIES CHEMOTAXIS-NAVIER-STOKES SYSTEM [J].
Liu, Changchun ;
Li, Pingping .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (08) :4567-4585
[10]   Optimal control of a new mechanochemical model with state constraint [J].
Liu, Changchun ;
Zhang, Xiaoli .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (11) :9237-9263