The Navier-Stokes-Voigt equations with position-dependent slip boundary conditions

被引:13
作者
Baranovskii, Evgenii S. [1 ]
机构
[1] Voronezh State Univ, Dept Appl Math Informat & Mech, Voronezh 394018, Russia
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2023年 / 74卷 / 01期
关键词
Navier-Stokes-Voigt equations; Navier slip conditions; Weak solutions; Existence and uniqueness; Long-time behavior; REGULARITY; ATTRACTOR; FLUIDS; FLOWS;
D O I
10.1007/s00033-022-01881-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider an initial-boundary value problem for the Navier-Stokes-Voigt equations with a general position-dependent Navier-type slip boundary condition, which is formulated in terms of the curl operator. This system models unsteady flows of an incompressible viscoelastic fluid in a 3D bounded domain with impermeable heterogeneous boundary. The existence of a unique weak solution, global in time, is proved for arbitrary large data from suitable function spaces. We also study the long-time asymptotic behavior of the velocity field under the assumption that the external forces field is conservative.
引用
收藏
页数:18
相关论文
共 42 条
[1]  
Amrouche C, 1998, MATH METHOD APPL SCI, V21, P823, DOI 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO
[2]  
2-B
[3]   Mixed initial-boundary value problem for equations of motion of Kelvin-Voigt fluids [J].
Baranovskii, E. S. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2016, 56 (07) :1363-1371
[4]   Flows of a polymer fluid in domain with impermeable boundaries [J].
Baranovskii, E. S. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2014, 54 (10) :1589-1596
[5]   Strong Solutions of the Incompressible Navier-Stokes-Voigt Model [J].
Baranovskii, Evgenii S. .
MATHEMATICS, 2020, 8 (02)
[6]   On the Navier-Stokes equation with boundary conditions based on vorticity [J].
Bellout, H ;
Neustupa, J ;
Penel, P .
MATHEMATISCHE NACHRICHTEN, 2004, 269 :59-72
[7]   A FINITE ELEMENT DISCRETIZATION OF THE THREE-DIMENSIONAL NAVIER-STOKES EQUATIONS WITH MIXED BOUNDARY CONDITIONS [J].
Bernardi, Christine ;
Hecht, Frederic ;
Verfuerth, Ruediger .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2009, 43 (06) :1185-1201
[8]   Suitable weak solutions to the 3D Navier-Stokes equations are constructed with the Voigt approximation [J].
Berselli, Luigi C. ;
Spirito, Stefano .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (05) :3285-3316
[9]  
Cioranescu D., 2016, Mechanics and Mathematics of Fluids of the Differential Type
[10]   Sharp Inviscid Limit Results under Navier Type Boundary Conditions. An Lp Theory [J].
da Veiga, H. Beirao ;
Crispo, F. .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2010, 12 (03) :397-411