Recent Advances in Hydrogen Production from Hybrid Water Electrolysis through Alternative Oxidation Reactions

被引:8
|
作者
Fan, Li [1 ]
Wang, Di [1 ]
Ma, Kui [1 ]
Zhou, Chang-An [1 ]
Yue, Hairong [1 ,2 ]
机构
[1] Sichuan Univ, Sch Chem Engn, Low Carbon Technol & Chem React Engn Lab, Chengdu 610065, Peoples R China
[2] Sichuan Univ, Inst New Energy & Low Carbon Technol, Chengdu 610207, Peoples R China
基金
中国国家自然科学基金;
关键词
electrocatalysis; hydrogen; hybrid water electrolysis; oxygen evolution reaction; GAS SHIFT REACTION; FORMALDEHYDE OXIDATION; ENERGY-EFFICIENT; H-2; PRODUCTION; ELECTROOXIDATION; NICKEL; ACID; ELECTROCATALYSTS; GENERATION; CATALYST;
D O I
10.1002/cctc.202301332
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Water splitting driven by green electricity from renewable energy input to produce H2 has been widely considered as a promising strategy to realize the goals for future clean energy. However, in conventional overall water electrolysis, the sluggish kinetics and high onset potential of anode OER limit the cathode HER rate, which lowers the overall energy conversion efficiency. Over the past decade, an innovative concept involving hybrid water electrolysis by replacing OER with thermodynamically more favorable oxidation reactions coupling with the cathodic hydrogen evolution reaction has been devised to alleviate the limitations associated with the anodic OER. In this review, we summarize the recent progress concerning electrochemical hydrogen production by coupling the oxidation of molecules incorporating hydroxyl, aldehyde, and amino functional groups, with special emphasis on alternative reactions involving CO and sulfide. Finally, the remaining challenges and future perspectives are also discussed. We hope this review will accelerate the development of novel strategies for practicable H2 production from hybrid water electrolysis. In this review, we provide comprehensive overview of potential anodic oxidation systems that can replace OER, focusing on hybrid electrolysis of water. The advantages, challenges and outlooks of using alcohols and aldehydes, biomass derived compounds, amines, and other small molecules as anodes alternative reactants for electrolytic hydrogen production have been discussed in detail.image
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Recent Advances in Catalyst Materials for PEM Water Electrolysis
    Ababao, Paula Marielle
    Oh, Ilwhan
    JOURNAL OF THE KOREAN ELECTROCHEMICAL SOCIETY, 2023, 26 (02): : 19 - 34
  • [32] Recent advances in renewable energy electrolysis hydrogen production technology and related electrocatalysts
    Guo B.
    Luo D.
    Zhou H.
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2021, 40 (06): : 2933 - 2951
  • [33] Recent Advances in Electrochemical Water Oxidation to Produce Hydrogen Peroxide: A Mechanistic Perspective
    Mavrikis, Sotirios
    Perry, Samuel C.
    Leung, Pui Ki
    Wang, Ling
    de Leon, Carlos Ponce
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (01) : 76 - 91
  • [34] Recent advances of hydrogen production through particulate semiconductor photocatalytic overall water splitting
    Zhi Jiang
    Zhen Ye
    Wenfeng Shangguan
    Frontiers in Energy, 2022, 16 : 49 - 63
  • [35] Recent advances of hydrogen production through particulate semiconductor photocatalytic overall water splitting
    JIANG Zhi
    YE Zhen
    SHANGGUAN Wenfeng
    Frontiers in Energy, 2022, 16 (01) : 49 - 63
  • [36] Recent advances of hydrogen production through particulate semiconductor photocatalytic overall water splitting
    Jiang, Zhi
    Ye, Zhen
    Shangguan, Wenfeng
    FRONTIERS IN ENERGY, 2022, 16 (01) : 49 - 63
  • [37] Earth-Abundant Metal-Based Electrocatalysts Promoted Anodic Reaction in Hybrid Water Electrolysis for Efficient Hydrogen Production: Recent Progress and Perspectives
    Deng, Chen
    Toe, Cui Ying
    Li, Xuan
    Tan, Jingjin
    Yang, Hengpan
    Hu, Qi
    He, Chuanxin
    ADVANCED ENERGY MATERIALS, 2022, 12 (25)
  • [38] Recent advances in production of hydrogen from biomass
    Kirtay, Elif
    ENERGY CONVERSION AND MANAGEMENT, 2011, 52 (04) : 1778 - 1789
  • [39] Recent hydrogen production strategies: Recent advances in electrocatalysis
    Saad, Islam
    El-Dek, S. I.
    Eissa, M. F.
    Assaud, Loic
    Abukhadra, Mostafa R.
    Al Zoubi, Wail
    Kang, Jee-Hyun
    Amin, Rafat M.
    INORGANIC CHEMISTRY COMMUNICATIONS, 2024, 165
  • [40] Hybrid Water Electrolysis: A New Sustainable Avenue for Energy-Saving Hydrogen Production
    Chen Z.
    Wei W.
    Song L.
    Ni B.-J.
    Sustainable Horizons, 2022, 1