Optimal regularity of the thin obstacle problem by an epiperimetric inequality

被引:2
作者
Carducci, Matteo [1 ]
机构
[1] Univ Roma La Sapienza, Dept Math Guido Castelnuovo, Piazzale Aldo Moro 5, I-00185 Rome, Italy
关键词
Free boundary regularity; Thin obstacle problem; Epiperimetric inequality;
D O I
10.1007/s10231-023-01403-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The key point to prove the optimal C-1,C-1/2 regularity of the thin obstacle problem is that the frequency at a point of the free boundary x(0) is an element of Gamma (u), say N-x0 (0(+), u), satisfies the lower bound N-x0 (0(+), u) >= 3 2. In this paper, we show an alternative method to prove this estimate, using an epiperimetric inequality for negative energies W3/2. It allows to say that there are not lambda-homogeneous global solutions with lambda is an element of(1, 3/2), and by this frequency gap, we obtain the desired lower bound, thus a new self-contained proof of the optimal regularity.
引用
收藏
页码:1311 / 1326
页数:16
相关论文
共 13 条
[1]  
Almgren F., 2000, World Scientific Monograph Series in Mathematics
[2]   THE STRUCTURE OF THE FREE BOUNDARY FOR LOWER DIMENSIONAL OBSTACLE PROBLEMS [J].
Athanasopoulos, I. ;
Caffarelli, L. A. ;
Salsa, S. .
AMERICAN JOURNAL OF MATHEMATICS, 2008, 130 (02) :485-498
[3]  
Athanasopoulos I., 2004, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), V310
[4]  
Caffarelli L., 1979, COMMUN PART DIFF EQ, V4
[5]   Direct Epiperimetric Inequalities for the Thin Obstacle Problem and Applications [J].
Colombo, Maria ;
Spolaor, Luca ;
Velichkov, Bozhidar .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2020, 73 (02) :384-420
[6]  
Edelen N., 2023, SYMMETRIC LOG EPIPER
[7]   THE THIN OBSTACLE PROBLEM: A SURVEY [J].
Fernandez-Real, Xavier .
PUBLICACIONS MATEMATIQUES, 2022, 66 (01) :3-55
[8]  
Focardi M., THIN OBSTACLE UNPUB
[9]  
Focardi M, 2016, ADV DIFFERENTIAL EQU, V21, P153
[10]   Some new monotonicity formulas and the singular set in the lower dimensional obstacle problem [J].
Garofalo, Nicola ;
Petrosyan, Arshak .
INVENTIONES MATHEMATICAE, 2009, 177 (02) :415-461