Mechanical strength and microwave dielectric properties of Al2O3 doped Li2MgTi3O8 ceramics with high temperature stability

被引:1
作者
Deng, Haiqing [1 ]
Qu, Xin [1 ]
Deng, Shan [1 ]
Gao, Pengxiang [1 ]
Chen, Xiuli [1 ]
Zhou, Huanfu [1 ]
机构
[1] Guilin Univ Technol, Sch Mat Sci & Engn, Key Lab Nonferrous Mat & New Proc Technol, Minist Educ, Guilin 541004, Peoples R China
关键词
Microwave dielectric ceramics; Flexural strength; Grain refinement; Packing fraction; FLEXURAL STRENGTH; ALUMINA CERAMICS; PACKING FRACTION; BOND-ENERGY; GLASS;
D O I
10.1016/j.solidstatesciences.2023.107316
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
A temperature stability microwave dielectric ceramic with composition of Li2MgTi3O8 (LMT) and Al2O3 with high flexural strength is synthesized by a conventional solid-state reaction method. The effects of Al2O3 (particles and whiskers) doping on the mechanical and dielectric properties of LMT ceramics are studied. A single spinel structure, without any secondary phases, is detected in the Al2O3 particles and Al2O3 whiskers doped LMT ceramics. The maximum flexural strengths of 152.5 MPa and 166.73 MPa are delivered in LMT +0.3 wt% Al2O3 (p) ceramics and LMT + 0.3 wt% Al2O3 (w) ceramics, respectively, which are enhanced by 53.21% and 67.52% over those of unmodified LMT ceramics. Pinning and grain refinement contribute to the enhanced flexural strength of the system. The intrinsic factors of Q x f change are analyzed by calculating the packing fraction and lattice energy. In addition, ceramics exhibit excellent comprehensive microwave properties at 1050 degrees C: (LMT + 0.2 wt% Al2O3 (p):Q x f = 67056 GHz, tau(f) = -8.25 ppm/degrees C, epsilon(r) = 24.34, sigma(f) = 133.3 MPa; LMT + 0.1 wt% Al2O3(w): Q x f = 68670 GHz, tau(f) = -8.94 ppm/degrees C, epsilon(r) = 24.32, sigma(f) = 122.7 MPa) The results indicate that Al2O3 particles and Al2O3 whiskers are decent reinforcing agents for LMT ceramics.
引用
收藏
页数:11
相关论文
共 38 条
[1]   Influence of Al2O3 whisker concentration on flexural strength of Al2O3(w)-ZrO2 (TZ-3Y) composite [J].
Abdullah, Muhammad ;
Ahmad, Jamil ;
Mehmood, Mazhar .
CERAMICS INTERNATIONAL, 2012, 38 (08) :6517-6523
[2]   Microwave dielectric properties and compatibility with silver of low-fired Li2MgTi3O8 ceramics with Li2O-MgO-B2O3 frit [J].
Bao, Yan ;
Chen, Guo-hua ;
Hou, Mei-zhen ;
Yang, Yun ;
Han, Zuo-peng ;
Deng, Kai-neng .
TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2013, 23 (11) :3318-3323
[3]   Dielectric Resonator Antennas with Frequency Stability Under Severe Temperature Variations Based on Li2MgTi3O8 Ceramic Matrix Added with Bi2O3 [J].
Bezerra, J. W. O. ;
Oliveira, R. G. M. ;
Silva, M. A. S. ;
Maciel, T. F. ;
Goes, J. C. ;
Sombra, A. S. B. .
JOURNAL OF ELECTRONIC MATERIALS, 2018, 47 (12) :7272-7280
[4]   The modeling and mechanical properties prediction of whisker-reinforced ceramic composites [J].
Chen, Fei ;
Yan, Ke ;
Zhu, Yongsheng ;
Hong, Jun .
CERAMICS INTERNATIONAL, 2022, 48 (19) :28774-28780
[5]   Effects of CaSiO3 addition on sintering behavior and microwave dielectric properties of Al2O3 ceramics [J].
Chen, Jin-min ;
Wang, Huan-ping ;
Feng, Si-qiao ;
Ma, Hong-ping ;
Deng, De-gang ;
Xu, Shi-qing .
CERAMICS INTERNATIONAL, 2011, 37 (03) :989-993
[6]   Packing fraction, bond valence and crystal structure of AVO4(A = Eu, Y) microwave dielectric ceramics with low permittivity [J].
Chen, Jinwu ;
Fang, Liang ;
Li, Jie ;
Tang, Ying ;
Cheng, Kai ;
Cao, Yijie .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2020, 31 (21) :19180-19187
[7]   Microwave dielectric properties and its compatibility with silver electrode of Li2MgTi3O8 ceramics [J].
Chen, Xiuli ;
Zhou, Huanfu ;
Fang, Liang ;
Liu, Xiaobin ;
Wang, Yiliang .
JOURNAL OF ALLOYS AND COMPOUNDS, 2011, 509 (19) :5829-5832
[8]   Microwave dielectric properties of Al2O3 ceramics sintered at low temperature [J].
Dong, Guangyu ;
Li, W. .
CERAMICS INTERNATIONAL, 2021, 47 (14) :19955-19958
[9]   Preparation and Mechanical Properties of Copper Matrix Composites Reinforced by Carbon Nanotubes and Al2O3 [J].
Guo, Xu ;
Chen, Xiaohong ;
Liu, Ping ;
Zhou, Honglei ;
Fu, Shaoli ;
Li, Wei ;
Liu, Xinkuan ;
Ma, Fengcang ;
Wu, Zhengpeng .
ADVANCED ENGINEERING MATERIALS, 2021, 23 (06)
[10]  
Hakki BW, 1960, IRE Trans Microw Theory Tech, V8, P402, DOI DOI 10.1109/TMTT.1960.1124749