Second-order topological insulators and tunable topological phase transitions in honeycomb ferromagnets

被引:29
作者
Cai, Linke [1 ]
Li, Runhan [1 ]
Wu, Xinming [1 ]
Huang, Baibiao [1 ]
Dai, Ying [1 ]
Niu, Chengwang [1 ]
机构
[1] Shandong Univ, Sch Phys, State Key Lab Crystal Mat, Jinan 250100, Peoples R China
基金
中国国家自然科学基金;
关键词
GENERALIZED GRADIENT APPROXIMATION; SEMIMETALS;
D O I
10.1103/PhysRevB.107.245116
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Intrinsic magnetic topological insulators categorized by bulk-boundary correspondence are of significant fundamental and technological importance in topotronics. Yet the topological phase transition with variation of the bulk-boundary correspondence remains elusive. Here, using a tight-binding model and first-principles calculations, we demonstrate that 2H-MBr2 (M=Ru and Os) monolayers are intrinsic ferromagnetic (FM) second-order topological insulators (SOTIs) distinguished by the emergence of well-localized nontrivial corner states. Remarkably, with giant valley polarization, we point out the possibilities of the two-dimensional FM SOTIs for displaying a rich topological phase diagram; that is, topological phase transitions from FM SOTIs to quantum anomalous Hall insulators and then to normal insulators emerge by engineering the valleys. The obtained quantum anomalous Hall effect is characterized by a nonzero Chern number C = & PLUSMN;1 and one chiral edge state. Our results not only uncover a general framework to tune the bulk-boundary correspondence but also motivate a technological avenue to bridge valleytronics and magnetic topology with potential applications in topotronics and valleytronics.
引用
收藏
页数:7
相关论文
共 56 条
[21]   Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials [J].
Li, Jiaheng ;
Li, Yang ;
Du, Shiqiao ;
Wang, Zun ;
Gu, Bing-Lin ;
Zhang, Shou-Cheng ;
He, Ke ;
Duan, Wenhui ;
Xu, Yong .
SCIENCE ADVANCES, 2019, 5 (06)
[22]   Robust Second-Order Topological Insulators with Giant Valley Polarization in Two-Dimensional Honeycomb Ferromagnets [J].
Li, Runhan ;
Mao, Ning ;
Wu, Xinming ;
Huang, Baibiao ;
Dai, Ying ;
Niu, Chengwang .
NANO LETTERS, 2023, 23 (01) :91-97
[23]   Two-Dimensional Quadrupole Topological Insulator in γ-Graphyne [J].
Liu, Bing ;
Zhao, Gan ;
Liu, Zhao ;
Wang, Z. F. .
NANO LETTERS, 2019, 19 (09) :6492-6497
[24]   Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator [J].
Liu, Chang ;
Wang, Yongchao ;
Li, Hao ;
Wu, Yang ;
Li, Yaoxin ;
Li, Jiaheng ;
He, Ke ;
Xu, Yong ;
Zhang, Jinsong ;
Wang, Yayu .
NATURE MATERIALS, 2020, 19 (05) :522-+
[25]   Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides [J].
Liu, Gui-Bin ;
Shan, Wen-Yu ;
Yao, Yugui ;
Yao, Wang ;
Xiao, Di .
PHYSICAL REVIEW B, 2013, 88 (08)
[26]  
Luo A., 2022, NPJ COMPUT MATER, V8, P1
[27]   Experimental perspective on three-dimensional topological semimetals [J].
Lv, B. Q. ;
Qian, T. ;
Ding, H. .
REVIEWS OF MODERN PHYSICS, 2021, 93 (02)
[28]   Magnetism-mediated transition between crystalline and higher-order topological phases in NpSb [J].
Mao, Ning ;
Hu, Xiangting ;
Wang, Hao ;
Dai, Ying ;
Huang, Baibiao ;
Mokrousov, Yuriy ;
Niu, Chengwang .
PHYSICAL REVIEW B, 2021, 103 (19)
[29]   wannier90: A tool for obtaining maximally-localised Wannier functions [J].
Mostofi, Arash A. ;
Yates, Jonathan R. ;
Lee, Young-Su ;
Souza, Ivo ;
Vanderbilt, David ;
Marzari, Nicola .
COMPUTER PHYSICS COMMUNICATIONS, 2008, 178 (09) :685-699
[30]   Antiferromagnetic Topological Insulator with Nonsymmorphic Protection in Two Dimensions [J].
Niu, Chengwang ;
Wang, Hao ;
Mao, Ning ;
Huang, Baibiao ;
Mokrousov, Yuriy ;
Dai, Ying .
PHYSICAL REVIEW LETTERS, 2020, 124 (06)