Second-order topological insulators and tunable topological phase transitions in honeycomb ferromagnets

被引:29
作者
Cai, Linke [1 ]
Li, Runhan [1 ]
Wu, Xinming [1 ]
Huang, Baibiao [1 ]
Dai, Ying [1 ]
Niu, Chengwang [1 ]
机构
[1] Shandong Univ, Sch Phys, State Key Lab Crystal Mat, Jinan 250100, Peoples R China
基金
中国国家自然科学基金;
关键词
GENERALIZED GRADIENT APPROXIMATION; SEMIMETALS;
D O I
10.1103/PhysRevB.107.245116
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Intrinsic magnetic topological insulators categorized by bulk-boundary correspondence are of significant fundamental and technological importance in topotronics. Yet the topological phase transition with variation of the bulk-boundary correspondence remains elusive. Here, using a tight-binding model and first-principles calculations, we demonstrate that 2H-MBr2 (M=Ru and Os) monolayers are intrinsic ferromagnetic (FM) second-order topological insulators (SOTIs) distinguished by the emergence of well-localized nontrivial corner states. Remarkably, with giant valley polarization, we point out the possibilities of the two-dimensional FM SOTIs for displaying a rich topological phase diagram; that is, topological phase transitions from FM SOTIs to quantum anomalous Hall insulators and then to normal insulators emerge by engineering the valleys. The obtained quantum anomalous Hall effect is characterized by a nonzero Chern number C = & PLUSMN;1 and one chiral edge state. Our results not only uncover a general framework to tune the bulk-boundary correspondence but also motivate a technological avenue to bridge valleytronics and magnetic topology with potential applications in topotronics and valleytronics.
引用
收藏
页数:7
相关论文
共 56 条
[1]   Colloquium: Topological band theory [J].
Bansil, A. ;
Lin, Hsin ;
Das, Tanmoy .
REVIEWS OF MODERN PHYSICS, 2016, 88 (02)
[2]   Quantization of fractional corner charge in Cn-symmetric higher-order topological crystalline insulators [J].
Benalcazar, Wladimir A. ;
Li, Tianhe ;
Hughes, Taylor L. .
PHYSICAL REVIEW B, 2019, 99 (24)
[3]   Quantized electric multipole insulators [J].
Benalcazar, Wladimir A. ;
Bernevig, B. Andrei ;
Hughes, Taylor L. .
SCIENCE, 2017, 357 (6346) :61-66
[4]   Quantum spin Hall effect and topological phase transition in HgTe quantum wells [J].
Bernevig, B. Andrei ;
Hughes, Taylor L. ;
Zhang, Shou-Cheng .
SCIENCE, 2006, 314 (5806) :1757-1761
[5]   Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator [J].
Chang, Cui-Zu ;
Zhang, Jinsong ;
Feng, Xiao ;
Shen, Jie ;
Zhang, Zuocheng ;
Guo, Minghua ;
Li, Kang ;
Ou, Yunbo ;
Wei, Pang ;
Wang, Li-Li ;
Ji, Zhong-Qing ;
Feng, Yang ;
Ji, Shuaihua ;
Chen, Xi ;
Jia, Jinfeng ;
Dai, Xi ;
Fang, Zhong ;
Zhang, Shou-Cheng ;
He, Ke ;
Wang, Yayu ;
Lu, Li ;
Ma, Xu-Cun ;
Xue, Qi-Kun .
SCIENCE, 2013, 340 (6129) :167-170
[6]   Universal Approach to Magnetic Second-Order Topological Insulator [J].
Chen, Cong ;
Song, Zhida ;
Zhao, Jian-Zhou ;
Chen, Ziyu ;
Yu, Zhi-Ming ;
Sheng, Xian-Lei ;
Yang, Shengyuan A. .
PHYSICAL REVIEW LETTERS, 2020, 125 (05)
[7]   Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4 [J].
Deng, Yujun ;
Yu, Yijun ;
Shi, Meng Zhu ;
Guo, Zhongxun ;
Xu, Zihan ;
Wang, Jing ;
Chen, Xian Hui ;
Zhang, Yuanbo .
SCIENCE, 2020, 367 (6480) :895-+
[8]   Nobel Lecture: Topological quantum matter [J].
Duncan, F. ;
Haldane, M. .
REVIEWS OF MODERN PHYSICS, 2017, 89 (04)
[9]   Topological Switch between Second-Order Topological Insulators and Topological Crystalline Insulators [J].
Ezawa, Motohiko .
PHYSICAL REVIEW LETTERS, 2018, 121 (11)
[10]   High-Chern-number and high-temperature quantum Hall effect without Landau levels [J].
Ge, Jun ;
Liu, Yanzhao ;
Li, Jiaheng ;
Li, Hao ;
Luo, Tianchuang ;
Wu, Yang ;
Xu, Yong ;
Wang, Jian .
NATIONAL SCIENCE REVIEW, 2020, 7 (08) :1280-1287