Ground-state bistability of cold atoms in a cavity

被引:11
作者
Gabor, B. [1 ]
Nagy, D. [1 ]
Dombi, A. [1 ]
Clark, T. W. [1 ]
Williams, F. I. B. [1 ]
V. Adwaith, K. [1 ]
Vukics, A. [1 ]
Domokos, P. [1 ]
机构
[1] Wigner Res Ctr Phys, Inst Solid State Phys & Opt, POB 49, H-1525 Budapest, Hungary
关键词
ABSORPTIVE BISTABILITY; PHASE-TRANSITION; QUANTUM; GAS;
D O I
10.1103/PhysRevA.107.023713
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We experimentally demonstrate an optical bistability between two hyperfine ground states of trapped, cold atoms, using a single mode of an optical resonator in the collective strong coupling regime. Whereas in the familiar case, the bistable region is created through atomic saturation, we report an effect between states of high quantum purity, which is essential for future information storage. The source of nonlinearity is a cavity-assisted pumping between ground states of the atoms and the stability depends on the intensity of two driving lasers. We interpret the phenomenon in terms of the recent paradigm of first-order, driven-dissipative phase transitions, where the transmitted and driving fields are understood as the order and control parameters, respectively. A semiclassical mean-field theory is invoked to describe the nontrivial two-dimensional phase diagram arising from the competition of the two drive. The saturation-induced bistability is recovered for infinite drive in one of the controls. The order of the transition is confirmed experimentally by hysteresis in the order parameter when either of the two control parameters is swept repeatedly across the bistability region.
引用
收藏
页数:10
相关论文
共 52 条
[1]   Self-Organization Threshold Scaling for Thermal Atoms Coupled to a Cavity [J].
Arnold, K. J. ;
Baden, M. P. ;
Barrett, M. D. .
PHYSICAL REVIEW LETTERS, 2012, 109 (15)
[2]   Dicke quantum phase transition with a superfluid gas in an optical cavity [J].
Baumann, Kristian ;
Guerlin, Christine ;
Brennecke, Ferdinand ;
Esslinger, Tilman .
NATURE, 2010, 464 (7293) :1301-U1
[3]   Critical slowing down in circuit quantum electrodynamics [J].
Brookes, Paul ;
Tancredi, Giovanna ;
Patterson, Andrew D. ;
Rahamim, Joseph ;
Esposito, Martina ;
Mavrogordatos, Themistoklis K. ;
Leek, Peter J. ;
Ginossar, Eran ;
Szymanska, Marzena H. .
SCIENCE ADVANCES, 2021, 7 (21)
[4]   Breakdown of Photon Blockade: A Dissipative Quantum Phase Transition in Zero Dimensions [J].
Carmichael, H. J. .
PHYSICAL REVIEW X, 2015, 5 (03)
[5]   QUANTUM FLUCTUATIONS IN ABSORPTIVE BISTABILITY WITHOUT ADIABATIC ELIMINATION [J].
CARMICHAEL, HJ .
PHYSICAL REVIEW A, 1986, 33 (05) :3262-3269
[6]   Critical dynamical properties of a first-order dissipative phase transition [J].
Casteels, W. ;
Fazio, R. ;
Ciuti, C. .
PHYSICAL REVIEW A, 2017, 95 (01)
[7]   Cavity-aided nondemolition measurements for atom counting and spin squeezing [J].
Chen, Zilong ;
Bohnet, Justin G. ;
Weiner, Joshua M. ;
Cox, Kevin C. ;
Thompson, James K. .
PHYSICAL REVIEW A, 2014, 89 (04)
[8]   Time-resolved observation of a dynamical phase transition with atoms in a cavity [J].
Clark, T. W. ;
Dombi, A. ;
Williams, F. I. B. ;
Kurko, A. ;
Fortagh, J. ;
Nagy, D. ;
Vukics, A. ;
Domokos, P. .
PHYSICAL REVIEW A, 2022, 105 (06)
[9]   Spin-Wave Multiplexed Atom-Cavity Electrodynamics [J].
Cox, Kevin C. ;
Meyer, David H. ;
Castillo, Zachary A. ;
Fatemi, Fredrik K. ;
Kunz, Paul D. .
PHYSICAL REVIEW LETTERS, 2019, 123 (26)
[10]   Collective strong coupling of cold potassium atoms in a ring cavity [J].
Culver, R. ;
Lampis, A. ;
Megyeri, B. ;
Pahwa, K. ;
Mudarikwa, L. ;
Holynski, M. ;
Courteille, Ph W. ;
Goldwin, J. .
NEW JOURNAL OF PHYSICS, 2016, 18