Deep TL: progress of a machine learning aided personal dose monitoring system

被引:4
作者
Derugin, Evelin [1 ]
Kroeninger, Kevin [1 ]
Mentzel, Florian [1 ]
Nackenhorst, Olaf [1 ]
Walbersloh, Joerg [2 ]
Weingarten, Jens [1 ]
机构
[1] TU Dortmund Univ, Dept Phys, D-44227 Dortmund, Germany
[2] Mat Prufungsamt Nordrhein Westfalen, Personendosimetrie, D-44287 Dortmund, Germany
关键词
GLOW CURVE; DOSIMETRY;
D O I
10.1093/rpd/ncad078
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Personal dosemeters using thermoluminescence detectors can provide information about the irradiation event beyond the pure dose estimation, which is valuable for improving radiation protection measures. In the presented study, the glow curves of the novel TL-DOS dosemeters developed by the Materialprufungsamt NRW in cooperation with the TU Dortmund University are analysed using deep learning approaches to predict the irradiation date of a single-dose irradiation of 10 mGy within a monitoring interval of 41 d. In contrast of previous work, the glow curves are measured using the current routine read-out process by pre-heating the detectors before the read-out. The irradiation dates are predicted with an accuracy of 2-5 d by the deep learning algorithm. Furthermore, the importance of the input features is evaluated using Shapley values to increase the interpretability of the neural network.
引用
收藏
页码:767 / 774
页数:8
相关论文
empty
未找到相关数据