A Novel Deep Learning-Based Classification Framework for COVID-19 Assisted with Weighted Average Ensemble Modeling

被引:2
|
作者
Chakraborty, Gouri Shankar [1 ]
Batra, Salil [1 ]
Singh, Aman [2 ,3 ,4 ]
Muhammad, Ghulam [5 ]
Torres, Vanessa Yelamos [3 ,6 ,7 ]
Mahajan, Makul [1 ]
机构
[1] Lovely Profess Univ, Dept Comp Sci & Engn, Phagwara 144411, Punjab, India
[2] Univ Europea Atlant, Higher Polytech Sch, C Isabel Torres 21, Santander 39011, Spain
[3] Univ Int Iberoamer, Dept Engn, Arecibo, PR 00613 USA
[4] Uttaranchal Univ, Uttaranchal Inst Technol, Dehra Dun 248007, Uttaranchal, India
[5] King Saud Univ, Coll Comp & Informat Sci, Dept Comp Engn, Riyadh 11543, Saudi Arabia
[6] Univ Europea Atlantico, Engn Res & Innovat Grp, C Isabel Torres 21, Santander 39011, Spain
[7] Univ Int Iberoamericana, Dept Project Management, Campeche 24560, Mexico
关键词
deep learning; convolutional neural network; image classification; COVID-19; ensemble prediction;
D O I
10.3390/diagnostics13101806
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
COVID-19 is an infectious disease caused by the deadly virus SARS-CoV-2 that affects the lung of the patient. Different symptoms, including fever, muscle pain and respiratory syndrome, can be identified in COVID-19-affected patients. The disease needs to be diagnosed in a timely manner, otherwise the lung infection can turn into a severe form and the patient's life may be in danger. In this work, an ensemble deep learning-based technique is proposed for COVID-19 detection that can classify the disease with high accuracy, efficiency, and reliability. A weighted average ensemble (WAE) prediction was performed by combining three CNN models, namely Xception, VGG19 and ResNet50V2, where 97.25% and 94.10% accuracy was achieved for binary and multiclass classification, respectively. To accurately detect the disease, different test methods have been proposed and developed, some of which are even being used in real-time situations. RT-PCR is one of the most successful COVID-19 detection methods, and is being used worldwide with high accuracy and sensitivity. However, complexity and time-consuming manual processes are limitations of this method. To make the detection process automated, researchers across the world have started to use deep learning to detect COVID-19 applied on medical imaging. Although most of the existing systems offer high accuracy, different limitations, including high variance, overfitting and generalization errors, can be found that can degrade the system performance. Some of the reasons behind those limitations are a lack of reliable data resources, missing preprocessing techniques, a lack of proper model selection, etc., which eventually create reliability issues. Reliability is an important factor for any healthcare system. Here, transfer learning with better preprocessing techniques applied on two benchmark datasets makes the work more reliable. The weighted average ensemble technique with hyperparameter tuning ensures better accuracy than using a randomly selected single CNN model.
引用
收藏
页数:27
相关论文
共 50 条
  • [31] A deep ensemble learning framework for COVID-19 detection in chest X-ray images
    Asif, Sohaib
    Qurrat-ul-Ain
    Awais, Muhammad
    Amjad, Kamran
    Bilal, Omair
    Al-Sabri, Raeed
    Abdullah, Monir
    NETWORK MODELING AND ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS, 2024, 13 (01):
  • [32] Deep learning-based COVID-19 diagnosis using CT scans with laboratory and physiological parameters
    Sameer, Humam Adnan
    Mutlag, Ammar Hussein
    Gharghan, Sadik Kamel
    IET IMAGE PROCESSING, 2023, 17 (11) : 3127 - 3142
  • [33] A Collaborative Multimodal Learning-Based Framework for COVID-19 Diagnosis
    Gao, Yuan
    Gong, Maoguo
    Ong, Yew-Soon
    Qin, A. K.
    Wu, Yue
    Xie, Fei
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (11) : 15883 - 15895
  • [34] A novel and accurate deep learning-based Covid-19 diagnostic model for heart patients
    Hassan, Ahmed
    Elhoseny, Mohamed
    Kayed, Mohammed
    SIGNAL IMAGE AND VIDEO PROCESSING, 2023, 17 (07) : 3397 - 3404
  • [35] COVID-19 Disease Prediction Using Weighted Ensemble Transfer Learning
    Roy, Pradeep Kumar
    Singh, Ashish
    INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2023, 8 (01): : 13 - 22
  • [36] A novel and accurate deep learning-based Covid-19 diagnostic model for heart patients
    Ahmed Hassan
    Mohamed Elhoseny
    Mohammed Kayed
    Signal, Image and Video Processing, 2023, 17 : 3397 - 3404
  • [37] A deep learning model for CXR-based COVID-19 detection
    Laouarem, Ayoub
    Kara-Mohamed, Chafia
    Bourenane, El-Bay
    Hamdi-Cherif, Aboubekeur
    2021 7TH INTERNATIONAL CONFERENCE ON ENGINEERING AND EMERGING TECHNOLOGIES (ICEET 2021), 2021, : 827 - 831
  • [38] Deep Learning-Based Knowledge Graph Generation for COVID-19
    Kim, Taejin
    Yun, Yeoil
    Kim, Namgyu
    SUSTAINABILITY, 2021, 13 (04) : 1 - 20
  • [39] A review of deep learning-based detection methods for COVID-19
    Subramanian, Nandhini
    Elharrouss, Omar
    Al-Maadeed, Somaya
    Chowdhury, Muhammed
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 143
  • [40] Electrochemical Biosensing and Deep Learning-Based Approaches in the Diagnosis of COVID-19: A Review
    Sadak, Omer
    Sadak, Ferhat
    Yildirim, Ozal
    Iverson, Nicole M.
    Qureshi, Rizwan
    Talo, Muhammed
    Ooi, Chui Ping
    Acharya, U. Rajendra
    Gunasekaran, Sundaram
    Alam, Tanvir
    IEEE ACCESS, 2022, 10 : 98633 - 98648