A Novel Deep Learning-Based Classification Framework for COVID-19 Assisted with Weighted Average Ensemble Modeling

被引:2
|
作者
Chakraborty, Gouri Shankar [1 ]
Batra, Salil [1 ]
Singh, Aman [2 ,3 ,4 ]
Muhammad, Ghulam [5 ]
Torres, Vanessa Yelamos [3 ,6 ,7 ]
Mahajan, Makul [1 ]
机构
[1] Lovely Profess Univ, Dept Comp Sci & Engn, Phagwara 144411, Punjab, India
[2] Univ Europea Atlant, Higher Polytech Sch, C Isabel Torres 21, Santander 39011, Spain
[3] Univ Int Iberoamer, Dept Engn, Arecibo, PR 00613 USA
[4] Uttaranchal Univ, Uttaranchal Inst Technol, Dehra Dun 248007, Uttaranchal, India
[5] King Saud Univ, Coll Comp & Informat Sci, Dept Comp Engn, Riyadh 11543, Saudi Arabia
[6] Univ Europea Atlantico, Engn Res & Innovat Grp, C Isabel Torres 21, Santander 39011, Spain
[7] Univ Int Iberoamericana, Dept Project Management, Campeche 24560, Mexico
关键词
deep learning; convolutional neural network; image classification; COVID-19; ensemble prediction;
D O I
10.3390/diagnostics13101806
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
COVID-19 is an infectious disease caused by the deadly virus SARS-CoV-2 that affects the lung of the patient. Different symptoms, including fever, muscle pain and respiratory syndrome, can be identified in COVID-19-affected patients. The disease needs to be diagnosed in a timely manner, otherwise the lung infection can turn into a severe form and the patient's life may be in danger. In this work, an ensemble deep learning-based technique is proposed for COVID-19 detection that can classify the disease with high accuracy, efficiency, and reliability. A weighted average ensemble (WAE) prediction was performed by combining three CNN models, namely Xception, VGG19 and ResNet50V2, where 97.25% and 94.10% accuracy was achieved for binary and multiclass classification, respectively. To accurately detect the disease, different test methods have been proposed and developed, some of which are even being used in real-time situations. RT-PCR is one of the most successful COVID-19 detection methods, and is being used worldwide with high accuracy and sensitivity. However, complexity and time-consuming manual processes are limitations of this method. To make the detection process automated, researchers across the world have started to use deep learning to detect COVID-19 applied on medical imaging. Although most of the existing systems offer high accuracy, different limitations, including high variance, overfitting and generalization errors, can be found that can degrade the system performance. Some of the reasons behind those limitations are a lack of reliable data resources, missing preprocessing techniques, a lack of proper model selection, etc., which eventually create reliability issues. Reliability is an important factor for any healthcare system. Here, transfer learning with better preprocessing techniques applied on two benchmark datasets makes the work more reliable. The weighted average ensemble technique with hyperparameter tuning ensures better accuracy than using a randomly selected single CNN model.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] A deep learning-based social distance monitoring framework for COVID-19
    Ahmed, Imran
    Ahmad, Misbah
    Rodrigues, Joel J. P. C.
    Jeon, Gwanggil
    Din, Sadia
    SUSTAINABLE CITIES AND SOCIETY, 2021, 65
  • [2] Deep learning-based improved snapshot ensemble technique for COVID-19 chest X-ray classification
    Babu, Samson Anosh P.
    Annavarapu, Chandra Sekhara Rao
    APPLIED INTELLIGENCE, 2021, 51 (05) : 3104 - 3120
  • [3] Deep learning-based improved snapshot ensemble technique for COVID-19 chest X-ray classification
    Samson Anosh Babu P
    Chandra Sekhara Rao Annavarapu
    Applied Intelligence, 2021, 51 : 3104 - 3120
  • [4] Deep Stacked Ensemble Learning Model for COVID-19 Classification
    Madhu, G.
    Bharadwaj, B. Lalith
    Boddeda, Rohit
    Vardhan, Sai
    Kautish, K. Sandeep
    Alnowibet, Khalid
    Alrasheedi, Adel F.
    Mohamed, Ali Wagdy
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 70 (03): : 5467 - 5486
  • [5] Deep Learning-Based Forecasting of COVID-19 in India
    Pillai, Punitha Kumaresa
    Durairaj, Devaraj
    Samivel, Kanthammal
    JOURNAL OF TESTING AND EVALUATION, 2022, 50 (01) : 225 - 242
  • [6] Deep Learning-Based COVID-19 Pneumonia Classification Using Chest CT Images: Model Generalizability
    Nguyen, Dan
    Kay, Fernando
    Tan, Jun
    Yan, Yulong
    Ng, Yee Seng
    Iyengar, Puneeth
    Peshock, Ron
    Jiang, Steve
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2021, 4
  • [7] DL-CRC: Deep Learning-Based Chest Radiograph Classification for COVID-19 Detection: A Novel Approach
    Sakib, Sadman
    Tazrin, Tahrat
    Fouda, Mostafa M.
    Fadlullah, Zubair Md.
    Guizani, Mohsen
    IEEE ACCESS, 2020, 8 : 171575 - 171589
  • [8] COVID-19 Image Segmentation Based on Deep Learning and Ensemble Learning
    Meyer, Philip
    Mueller, Dominik
    Soto-Rey, Inaki
    Kramer, Frank
    PUBLIC HEALTH AND INFORMATICS, PROCEEDINGS OF MIE 2021, 2021, 281 : 518 - 519
  • [9] Deep Ensemble Learning-Based Models for Diagnosis of COVID-19 from Chest CT Images
    Mouhafid, Mohamed
    Salah, Mokhtar
    Yue, Chi
    Xia, Kewen
    HEALTHCARE, 2022, 10 (01)
  • [10] The ensemble deep learning model for novel COVID-19 on CT images
    Zhou Tao
    Lu Huiling
    Yang Zaoli
    Qiu Shi
    Huo Bingqiang
    Dong Yali
    APPLIED SOFT COMPUTING, 2021, 98