Correcting Gain Drift in TES Detectors for Future X-Ray Satellite Missions

被引:11
作者
Smith, Stephen J. [1 ]
Witthoeft, Michael C. [1 ]
Adams, Joseph S. [1 ]
Bandler, Simon R. [1 ]
Beaumont, Sophie [1 ]
Chervenak, James A. [1 ]
Cumbee, Renata S. [1 ]
Eckart, Megan E. [2 ]
Finkbeiner, Fred M. [1 ]
Hull, Sam V. [1 ]
Kelley, Richard L. [1 ]
Kilbourne, Caroline A. [1 ]
Leutenegger, Maurice A. [1 ]
Porter, Frederick S. [1 ]
Sakai, Kazuhiro [1 ]
Wakeham, Nicholas A. [1 ]
Wassell, Edward J. [1 ]
机构
[1] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
关键词
Magnetic fields; Gain; Detectors; Energy measurement; Calibration; NASA; Shape; Athena space telescope; energy-scale calibration; imaging array; transition-edge sensor; X-ray spectroscopy;
D O I
10.1109/TASC.2023.3258908
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Changes in the operating environment of transition-edge sensor (TES) microcalorimeters can cause variations in the detector gain function over time. If not corrected, this can degrade the spectral resolution, and cause systematic errors in the knowledge of the absolute energy. The non-linear nature of the TES energy scale function and the potential for multiple, simultaneous sources of drift can make effective corrections extremely challenging. Satellite instruments typically employ an on-board calibration source to provide known reference X-ray lines. This allows real-time monitoring of the detector gain stability and provides information that can be used to correct for drifts. Here we discuss progress towards demonstrating that the energy scale requirements can be met for future instruments such as Athena X-IFU. We present measurements (from similar to 1-12 keV) on similar to 200 pixels in a prototype X-IFU array. We use a non-linear drift correction algorithm that uses two fiducial calibration lines (5.4 keV and 8.0 keV) to track gain and interpolate a new, corrected gain between a set of three pre-calibrated gain functions that span the anticipated range of induced drifts. We demonstrate this algorithm is effective at correcting the full gain scale in the presence of multiple sources of environmental drift.
引用
收藏
页数:6
相关论文
共 50 条
[41]   Elemental composition x-ray fluorescence analysis with a TES-based high-resolution x-ray spectrometer [J].
Wu, Bingjun ;
Xia, Jingkai ;
Zhang, Shuo ;
Fu, Qiang ;
Zhang, Hui ;
Xie, Xiaoming ;
Liu, Zhi .
CHINESE PHYSICS B, 2023, 32 (09)
[42]   Hybrid CMOS detectors for the Lynx x-ray surveyor high definition x-ray imager [J].
Hull, Samuel, V ;
Falcone, Abraham D. ;
Bray, Evan ;
Wages, Mitchell ;
McQuaide, Maria ;
Burrows, David N. .
JOURNAL OF ASTRONOMICAL TELESCOPES INSTRUMENTS AND SYSTEMS, 2019, 5 (02)
[43]   Energy calibration and gain correction of pixelated spectroscopic x-ray detectors using correlation optimised warping [J].
Egan, C. K. ;
Scuffham, J. W. ;
Veale, M. C. ;
Wilson, M. D. ;
Seller, P. ;
Cernik, R. J. .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2017, 28 (01)
[44]   Mitigating the Effects of Charged Particle Strikes on TES Arrays for Exotic Atom X-ray Experiments [J].
Tatsuno, H. ;
Bennett, D. A. ;
Doriese, W. B. ;
Durkin, M. S. ;
Fowler, J. W. ;
Gard, J. D. ;
Hashimoto, T. ;
Hayakawa, R. ;
Hayashi, T. ;
Hilton, G. C. ;
Ichinohe, Y. ;
Noda, H. ;
O'Neil, G. C. ;
Okada, S. ;
Reintsema, C. D. ;
Schmidt, D. R. ;
Swetz, D. S. ;
Ullom, J. N. ;
Yamada, S. .
JOURNAL OF LOW TEMPERATURE PHYSICS, 2020, 200 (5-6) :247-254
[45]   Micrometeoroid damage to CCDs in XMM-Newton and swift and its significance for future X-ray missions [J].
Abbey, T ;
Carpenter, J ;
Read, A ;
Wells, A .
PROCEEDINGS OF THE X-RAY UNIVERSE 2005, VOLS 1 AND 2, 2006, 604 :943-+
[46]   Spatial characterization of monolithic multi-element Silicon-Drift-Detectors for X-ray spectroscopic applications [J].
Kappen, P ;
Tröger, L ;
Hansen, K ;
Reckleben, C ;
Lechner, P ;
Strssüder, L ;
Materlik, G .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2001, 467 :1163-1166
[47]   Mitigating the Effects of Charged Particle Strikes on TES Arrays for Exotic Atom X-ray Experiments [J].
H. Tatsuno ;
D. A. Bennett ;
W. B. Doriese ;
M. S. Durkin ;
J. W. Fowler ;
J. D. Gard ;
T. Hashimoto ;
R. Hayakawa ;
T. Hayashi ;
G. C. Hilton ;
Y. Ichinohe ;
H. Noda ;
G. C. O’Neil ;
S. Okada ;
C. D. Reintsema ;
D. R. Schmidt ;
D. S. Swetz ;
J. N. Ullom ;
S. Yamada .
Journal of Low Temperature Physics, 2020, 200 :247-254
[48]   Characterization of a Prototype TES-Based Anti-coincidence Detector for Use with Future X-ray Calorimeter Arrays [J].
S. E. Busch ;
W. S. Yoon ;
J. S. Adams ;
C. N. Bailey ;
S. R. Bandler ;
J. A. Chervenak ;
M. E. Eckart ;
A. J. Ewin ;
F. M. Finkbeiner ;
R. L. Kelley ;
C. A. Kilbourne ;
S.-J. Lee ;
J.-P. Porst ;
F. S. Porter ;
J. E. Sadleir ;
S. J. Smith ;
M. Sultana .
Journal of Low Temperature Physics, 2016, 184 :23-29
[49]   Nearly Quantum Limited Two-Stage SQUID Amplifiers for the Frequency Domain Multiplexing of TES Based X-ray and Infrared Detectors [J].
Gottardi, L. ;
Kiviranta, M. ;
van der Kuur, J. ;
Akamatsu, H. ;
Bruijn, M. ;
den Hartog, R. .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2015, 25 (03)
[50]   Characterization of a Prototype TES-Based Anti-coincidence Detector for Use with Future X-ray Calorimeter Arrays [J].
Busch, S. E. ;
Yoon, W. S. ;
Adams, J. S. ;
Bailey, C. N. ;
Bandler, S. R. ;
Chervenak, J. A. ;
Eckart, M. E. ;
Ewin, A. J. ;
Finkbeiner, F. M. ;
Kelley, R. L. ;
Kilbourne, C. A. ;
Lee, S. -J. ;
Porst, J. -P. ;
Porter, F. S. ;
Sadleir, J. E. ;
Smith, S. J. ;
Sultana, M. .
JOURNAL OF LOW TEMPERATURE PHYSICS, 2016, 184 (1-2) :23-29