Correcting Gain Drift in TES Detectors for Future X-Ray Satellite Missions

被引:10
作者
Smith, Stephen J. [1 ]
Witthoeft, Michael C. [1 ]
Adams, Joseph S. [1 ]
Bandler, Simon R. [1 ]
Beaumont, Sophie [1 ]
Chervenak, James A. [1 ]
Cumbee, Renata S. [1 ]
Eckart, Megan E. [2 ]
Finkbeiner, Fred M. [1 ]
Hull, Sam V. [1 ]
Kelley, Richard L. [1 ]
Kilbourne, Caroline A. [1 ]
Leutenegger, Maurice A. [1 ]
Porter, Frederick S. [1 ]
Sakai, Kazuhiro [1 ]
Wakeham, Nicholas A. [1 ]
Wassell, Edward J. [1 ]
机构
[1] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
关键词
Magnetic fields; Gain; Detectors; Energy measurement; Calibration; NASA; Shape; Athena space telescope; energy-scale calibration; imaging array; transition-edge sensor; X-ray spectroscopy;
D O I
10.1109/TASC.2023.3258908
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Changes in the operating environment of transition-edge sensor (TES) microcalorimeters can cause variations in the detector gain function over time. If not corrected, this can degrade the spectral resolution, and cause systematic errors in the knowledge of the absolute energy. The non-linear nature of the TES energy scale function and the potential for multiple, simultaneous sources of drift can make effective corrections extremely challenging. Satellite instruments typically employ an on-board calibration source to provide known reference X-ray lines. This allows real-time monitoring of the detector gain stability and provides information that can be used to correct for drifts. Here we discuss progress towards demonstrating that the energy scale requirements can be met for future instruments such as Athena X-IFU. We present measurements (from similar to 1-12 keV) on similar to 200 pixels in a prototype X-IFU array. We use a non-linear drift correction algorithm that uses two fiducial calibration lines (5.4 keV and 8.0 keV) to track gain and interpolate a new, corrected gain between a set of three pre-calibrated gain functions that span the anticipated range of induced drifts. We demonstrate this algorithm is effective at correcting the full gain scale in the presence of multiple sources of environmental drift.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Modeling of TES X-Ray Microcalorimeters with a Novel Absorber Design
    N. Iyomoto
    S. R. Bandler
    R. P. Brekosky
    A.-D. Brown
    J. A. Chervenak
    E. Figueroa-Feliciano
    F. M. Finkbeiner
    R. L. Kelley
    C. A. Kilbourne
    M. A. Lindeman
    F. S. Porter
    T. Saab
    J. E. Sadleir
    S. J. Smith
    [J]. Journal of Low Temperature Physics, 2008, 151 : 406 - 412
  • [32] Design and fabrication of TES microcalorimeters for x-ray astrophysics in Japan
    Ezoe, Yuichiro
    Yoshino, Tomotaka
    Mukai, Kazuma
    Yoshitake, Hiroshi
    Akamatsu, Hiroki
    Ishikawa, Kumi
    Takano, Takayuki
    Maeda, Ryutaro
    Ishisaki, Yoshitaka
    Yamasaki, Noriko Y.
    Mitsuda, Kazuhisa
    Ohashi, Takaya
    [J]. HIGH ENERGY, OPTICAL, AND INFRARED DETECTORS FOR ASTRONOMY III, 2008, 7021
  • [33] X-ray spectroscopic performance of a matrix of silicon drift diodes
    Rachevski, Alexandre
    Zampa, Gianluigi
    Zampa, Nicola
    Rashevskaya, Irina
    Vacchi, Andrea
    Giacomini, Gabriele
    Picciotto, Antonino
    Cicuttin, Andres
    Crespo, Maria Liz
    Tuniz, Claudio
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2013, 718 : 353 - 355
  • [34] A Highly Linear Calibration Metric for TES X-ray Microcalorimeters
    Pappas, C. G.
    Fowler, J. W.
    Bennett, D. A.
    Doriese, W. B.
    Joe, Y. I.
    Morgan, K. M.
    O'Neil, G. C.
    Ullom, J. N.
    Swetz, D. S.
    [J]. JOURNAL OF LOW TEMPERATURE PHYSICS, 2018, 193 (3-4) : 249 - 257
  • [35] Development of TES-based X-ray Microcalorimeters for HUBS
    Wang, Y. R.
    Wang, S. F.
    Li, F. J.
    Liang, Y. J.
    Ding, J.
    Chen, Y. L.
    Cui, W.
    Huang, R.
    Hua, X. Y.
    Jin, H.
    Wang, G. L.
    Zhang, S.
    Zhang, Y. N.
    Zhou, Y.
    [J]. SPACE TELESCOPES AND INSTRUMENTATION 2020: ULTRAVIOLET TO GAMMA RAY, 2021, 11444
  • [36] Modeling of TES X-ray microcalorimeters with a novel absorber design
    Iyomoto, N.
    Bandler, S. R.
    Brekosky, R. P.
    Brown, A. -D.
    Chervenak, J. A.
    Figueroa-Feliciano, E.
    Finkbeiner, F. M.
    Kelley, R. L.
    Kilbourne, C. A.
    Lindeman, M. A.
    Porter, F. S.
    Saab, T.
    Sadleir, J. E.
    Smith, S. J.
    [J]. JOURNAL OF LOW TEMPERATURE PHYSICS, 2008, 151 (1-2) : 406 - 412
  • [37] Photo diode gain calibration of flat dynamic X-ray detectors using reset light
    Groh, BA
    Sandkamp, B
    Hoernig, M
    Heer, VK
    Busse, F
    Ducourant, T
    [J]. MEDICAL IMAGING 2002: PHYSICS OF MEDICAL IMAGING, 2002, 4682 : 438 - 446
  • [38] Advances in silicon carbide X-ray detectors
    Bertuccio, Giuseppe
    Caccia, Stefano
    Puglisi, Donatella
    Macera, Daniele
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2011, 652 (01) : 193 - 196
  • [39] Kinetic Inductance Detectors for X-Ray Spectroscopy
    Cecil, T.
    Miceli, A.
    Gades, L.
    Datesman, A.
    Quaranta, O.
    Yefremenko, V.
    Novosad, V.
    Mazin, B.
    [J]. PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON TECHNOLOGY AND INSTRUMENTATION IN PARTICLE PHYSICS (TIPP 2011), 2012, 37 : 697 - 702
  • [40] Techniques and detectors for polarimetry in X-ray astronomy
    Soffitta, P
    Baldini, L
    Bellazzini, R
    Brez, A
    Costa, E
    Di Persio, G
    Latronico, L
    Omodei, N
    Pacciani, L
    Spandre, G
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 510 (1-2) : 170 - 175