Correcting Gain Drift in TES Detectors for Future X-Ray Satellite Missions

被引:10
作者
Smith, Stephen J. [1 ]
Witthoeft, Michael C. [1 ]
Adams, Joseph S. [1 ]
Bandler, Simon R. [1 ]
Beaumont, Sophie [1 ]
Chervenak, James A. [1 ]
Cumbee, Renata S. [1 ]
Eckart, Megan E. [2 ]
Finkbeiner, Fred M. [1 ]
Hull, Sam V. [1 ]
Kelley, Richard L. [1 ]
Kilbourne, Caroline A. [1 ]
Leutenegger, Maurice A. [1 ]
Porter, Frederick S. [1 ]
Sakai, Kazuhiro [1 ]
Wakeham, Nicholas A. [1 ]
Wassell, Edward J. [1 ]
机构
[1] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
关键词
Magnetic fields; Gain; Detectors; Energy measurement; Calibration; NASA; Shape; Athena space telescope; energy-scale calibration; imaging array; transition-edge sensor; X-ray spectroscopy;
D O I
10.1109/TASC.2023.3258908
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Changes in the operating environment of transition-edge sensor (TES) microcalorimeters can cause variations in the detector gain function over time. If not corrected, this can degrade the spectral resolution, and cause systematic errors in the knowledge of the absolute energy. The non-linear nature of the TES energy scale function and the potential for multiple, simultaneous sources of drift can make effective corrections extremely challenging. Satellite instruments typically employ an on-board calibration source to provide known reference X-ray lines. This allows real-time monitoring of the detector gain stability and provides information that can be used to correct for drifts. Here we discuss progress towards demonstrating that the energy scale requirements can be met for future instruments such as Athena X-IFU. We present measurements (from similar to 1-12 keV) on similar to 200 pixels in a prototype X-IFU array. We use a non-linear drift correction algorithm that uses two fiducial calibration lines (5.4 keV and 8.0 keV) to track gain and interpolate a new, corrected gain between a set of three pre-calibrated gain functions that span the anticipated range of induced drifts. We demonstrate this algorithm is effective at correcting the full gain scale in the presence of multiple sources of environmental drift.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] A monolithic array of 77 Silicon Drift Detectors for X-ray spectroscopy and gamma-ray imaging applications
    Fiorini, C
    Bellini, M
    Gola, A
    Longoni, A
    Perotti, E
    Lechner, P
    Soltau, H
    Strüder, L
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2005, 52 (04) : 1165 - 1170
  • [22] Hard X-ray and Gamma-ray Imaging and Spectroscopy using Scintillators coupled to Silicon Drift Detectors
    Lechner, P.
    Eckhard, R.
    Fiorini, C.
    Gola, A.
    Longoni, A.
    Niculae, A.
    Peloso, R.
    Soltau, H.
    Strueder, L.
    HIGH ENERGY, OPTICAL, AND INFRARED DETECTORS FOR ASTRONOMY III, 2008, 7021
  • [23] Optimized readout methods of silicon drift detectors for high-resolution X-ray spectroscopy
    Niculae, A.
    Lechner, P.
    Soltau, H.
    Lutz, G.
    Strueder, L.
    Fiorini, C.
    Longoni, A.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2006, 568 (01) : 336 - 342
  • [24] Optimised filtering for improved energy and position resolution in position-sensitive TES based X-ray detectors
    Smith, SJ
    Whitford, CH
    Fraser, GW
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2006, 556 (01) : 237 - 245
  • [25] Large area silicon drift detectors system for high precision timed x-ray spectroscopy
    Miliucci, M.
    Iliescu, M.
    Sgaramella, F.
    Bazzi, M.
    Bosnar, D.
    Bragadireanu, M.
    Carminati, M.
    Cargnelli, M.
    Clozza, A.
    Curceanu, C.
    Deda, G.
    De Paolis, L.
    Del Grande, R.
    Fiorini, C.
    Guaraldo, C.
    Iwasaki, M.
    King, P.
    Sandri, P. Levi
    Marton, J.
    Moskal, P.
    Napolitano, F.
    Niedzwiecki, S.
    Piscicchia, K.
    Scordo, A.
    Shi, H.
    Silarski, M.
    Sirghi, D.
    Sirghi, F.
    Skurzok, M.
    Spallone, A.
    Tuechler, M.
    Doce, O. Vazquez
    Zmeskal, J.
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (09)
  • [26] AlInP photodiode x-ray detectors
    Zhao, S.
    Butera, S.
    Lioliou, G.
    Krysa, A. B.
    Barnett, A. M.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2019, 52 (22)
  • [27] Diamond detectors for x-ray spectroscopy
    Allegrini, P.
    Girolami, M.
    Calvani, P.
    Conte, G.
    Salvatori, S.
    Spiriti, E.
    Ralchenko, V.
    ADVANCES IN X-RAY/EUV OPTICS AND COMPONENTS III, 2008, 7077
  • [28] Developing X-ray microcalorimeters based on TiAu TES for HUBS
    Wang, G.
    Bruijn, M.
    Nagayoshi, K.
    Ridder, M.
    Taralli, E.
    Gottardi, L.
    Akamatsu, H.
    den Herder, J. W.
    Gao, J-R
    Cui, W.
    SPACE TELESCOPES AND INSTRUMENTATION 2020: ULTRAVIOLET TO GAMMA RAY, 2021, 11444
  • [29] A Highly Linear Calibration Metric for TES X-ray Microcalorimeters
    C. G. Pappas
    J. W. Fowler
    D. A. Bennett
    W. B. Doriese
    Y. I. Joe
    K. M. Morgan
    G. C. O’Neil
    J. N. Ullom
    D. S. Swetz
    Journal of Low Temperature Physics, 2018, 193 : 249 - 257
  • [30] TES X-ray Spectrometer at SLAC LCLS-II
    Li, Dale
    Alpert, B. K.
    Becker, D. T.
    Bennett, D. A.
    Carini, G. A.
    Cho, H. -M.
    Doriese, W. B.
    Dusatko, J. E.
    Fowler, J. W.
    Frisch, J. C.
    Gard, J. D.
    Guillet, S.
    Hilton, G. C.
    Holmes, M. R.
    Irwin, K. D.
    Kotsubo, V.
    Lee, S. -J.
    Mates, J. A. B.
    Morgan, K. M.
    Nakahara, K.
    Pappas, C. G.
    Reintsema, C. D.
    Schmidt, D. R.
    Smith, S. R.
    Swetz, D. S.
    Thayer, J. B.
    Titus, C. J.
    Ullom, J. N.
    Vale, L. R.
    Van Winkle, D. D.
    Wessels, A.
    Zhang, L.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2018, 193 (5-6) : 1287 - 1297