Correcting Gain Drift in TES Detectors for Future X-Ray Satellite Missions

被引:10
|
作者
Smith, Stephen J. [1 ]
Witthoeft, Michael C. [1 ]
Adams, Joseph S. [1 ]
Bandler, Simon R. [1 ]
Beaumont, Sophie [1 ]
Chervenak, James A. [1 ]
Cumbee, Renata S. [1 ]
Eckart, Megan E. [2 ]
Finkbeiner, Fred M. [1 ]
Hull, Sam V. [1 ]
Kelley, Richard L. [1 ]
Kilbourne, Caroline A. [1 ]
Leutenegger, Maurice A. [1 ]
Porter, Frederick S. [1 ]
Sakai, Kazuhiro [1 ]
Wakeham, Nicholas A. [1 ]
Wassell, Edward J. [1 ]
机构
[1] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
关键词
Magnetic fields; Gain; Detectors; Energy measurement; Calibration; NASA; Shape; Athena space telescope; energy-scale calibration; imaging array; transition-edge sensor; X-ray spectroscopy;
D O I
10.1109/TASC.2023.3258908
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Changes in the operating environment of transition-edge sensor (TES) microcalorimeters can cause variations in the detector gain function over time. If not corrected, this can degrade the spectral resolution, and cause systematic errors in the knowledge of the absolute energy. The non-linear nature of the TES energy scale function and the potential for multiple, simultaneous sources of drift can make effective corrections extremely challenging. Satellite instruments typically employ an on-board calibration source to provide known reference X-ray lines. This allows real-time monitoring of the detector gain stability and provides information that can be used to correct for drifts. Here we discuss progress towards demonstrating that the energy scale requirements can be met for future instruments such as Athena X-IFU. We present measurements (from similar to 1-12 keV) on similar to 200 pixels in a prototype X-IFU array. We use a non-linear drift correction algorithm that uses two fiducial calibration lines (5.4 keV and 8.0 keV) to track gain and interpolate a new, corrected gain between a set of three pre-calibrated gain functions that span the anticipated range of induced drifts. We demonstrate this algorithm is effective at correcting the full gain scale in the presence of multiple sources of environmental drift.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] TES microcalorimeter development for future Japanese X-ray astronomy missions
    Fujimoto, R
    Mitsuda, K
    Yamasaki, NY
    Iyomoto, N
    Oshima, T
    Takei, Y
    Futamoto, K
    Ichitsubo, T
    Fujimori, T
    Yoshida, K
    Ishisaki, Y
    Morita, U
    Koga, T
    Shinozaki, K
    Sato, K
    Takai, N
    Ohashi, T
    Kudo, H
    Sato, H
    Arakawa, T
    Kobayashi, H
    Izumi, T
    Ohtsuka, S
    Mori, K
    Shoji, S
    Osaka, T
    Homma, T
    Kuroda, Y
    Onishi, M
    Goto, M
    Beppu, F
    Tanaka, T
    Morooka, T
    Nakayama, S
    Chinone, K
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2004, 520 (1-3) : 431 - 434
  • [2] Count Rate Optimizations for TES Detectors at a Femtosecond X-ray Laser
    Titus, C. J.
    Li, D.
    Alpert, B. K.
    Cho, H-M
    Fowler, J. W.
    Lee, S-J
    Morgan, K. M.
    Swetz, D. S.
    Ullom, J. N.
    Wessels, A.
    Irwin, K. D.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2020, 199 (3-4) : 1038 - 1045
  • [3] Count Rate Optimizations for TES Detectors at a Femtosecond X-ray Laser
    C. J. Titus
    D. Li
    B. K. Alpert
    H. -M. Cho
    J. W. Fowler
    S. -J. Lee
    K. M. Morgan
    D. S. Swetz
    J. N. Ullom
    A. Wessels
    K. D. Irwin
    Journal of Low Temperature Physics, 2020, 199 : 1038 - 1045
  • [4] Testing magnetic interference between TES detectors and the telescope environment for future CMB satellite missions
    Ghigna, Tommaso
    Hoang, Thuong D.
    Hasebe, Takashi
    Hoshino, Yurika
    Katayama, Nobuhiko
    Komatsu, Kunimoto
    Lee, Adrian
    Matsumura, Tomotake
    Sakurai, Yuki
    Sugiyama, Shinya
    Suzuki, Aritoki
    Raum, Christopher
    Takaku, Ryota
    Westbrook, Benjamin
    MILLIMETER, SUBMILLIMETER, AND FAR-INFRARED DETECTORS AND INSTRUMENTATION FOR ASTRONOMY XI, 2022, 12190
  • [5] Developments of Frequency-Domain Multiplexing of TES Arrays for a Future X-Ray Satellite Mission
    Akamatsu, H.
    Gottardi, L.
    Adams, J.
    Bandler, S.
    Bruijn, M.
    Chervenak, J.
    Eckart, M.
    Finkbeiner, F.
    den Hartog, R.
    den Herder, J.
    Hoevers, H.
    Jambunathan, M.
    Kelley, R.
    Kilbourne, C.
    Lee, S. J.
    van der Kuur, J.
    van den Linden, A.
    Porter, F.
    Sadleir, J.
    Smith, S.
    Kiviranta, M.
    Wassell, E.
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2015, 25 (03)
  • [6] CCDs for future X-ray astronomy missions
    Holland, AD
    EUX, X-RAY, AND GAMMA-RAY INSTRUMENTATION FOR ASTRONOMY VIII, 1997, 3114 : 586 - 597
  • [7] Multichannel silicon drift detectors for X-ray spectroscopy
    Lechner, P
    Buttler, W
    Fiorini, C
    Hartmann, R
    Kemmer, J
    Krause, N
    Leutenegger, P
    Longoni, A
    Soltau, H
    Stötter, D
    Stötter, R
    Strüder, L
    Weber, U
    X-RAY OPTICS, INSTRUMENTS, AND MISSIONS III, 2000, 4012 : 592 - 599
  • [8] Hyperspectral X-ray Imaging with TES Detectors for Nanoscale Chemical Speciation Mapping
    Carpenter, M. H.
    Croce, M. P.
    Baker, Z. K.
    Batista, E. R.
    Caffrey, M. P.
    Fontes, C. J.
    Koehler, K. E.
    Kossmann, S. E.
    McIntosh, K. G.
    Rabin, M. W.
    Renck, B. W.
    Wagner, G. L.
    Wilkerson, M. P.
    Yang, P.
    Yoho, M. D.
    Ullom, J. N.
    Bennett, D. A.
    O'Neil, G. C.
    Reintsema, C. D.
    Schmidt, D. R.
    Hilton, G. C.
    Swetz, D. S.
    Becker, D. T.
    Garda, J. D.
    Imrek, J.
    Mates, J. A. B.
    Morgan, K. M.
    Yan, D.
    Wessels, A. L.
    Cantor, R. H.
    Hall, J. A.
    Carver, D. T.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2020, 200 (5-6) : 437 - 444
  • [9] Hyperspectral X-ray Imaging with TES Detectors for Nanoscale Chemical Speciation Mapping
    M. H. Carpenter
    M. P. Croce
    Z. K. Baker
    E. R. Batista
    M. P. Caffrey
    C. J. Fontes
    K. E. Koehler
    S. E. Kossmann
    K. G. McIntosh
    M. W. Rabin
    B. W. Renck
    G. L. Wagner
    M. P. Wilkerson
    P. Yang
    M. D. Yoho
    J. N. Ullom
    D. A. Bennett
    G. C. O’Neil
    C. D. Reintsema
    D. R. Schmidt
    G. C. Hilton
    D. S. Swetz
    D. T. Becker
    J. D. Gard
    J. Imrek
    J. A. B. Mates
    K. M. Morgan
    D. Yan
    A. L. Wessels
    R. H. Cantor
    J. A. Hall
    D. T. Carver
    Journal of Low Temperature Physics, 2020, 200 : 437 - 444
  • [10] Various optimizations of TES arrays for X-ray astrophysics
    Kilbourne, C. A.
    Bandler, S. R.
    Brown, A. -D.
    Chervenak, A.
    Figueroa-Feliciano, E.
    Finkbeiner, F.
    Iyomoto, N.
    Kelley, R. L.
    Porter, F. S.
    Smith, S. J.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2008, 151 (1-2) : 223 - 228