Quantum Simulation of Dissipative Collective Effects on Noisy Quantum Computers

被引:25
作者
Cattaneo, Marco [1 ,2 ]
Rossi, Matteo A. C. [3 ,4 ]
Garcia-Perez, Guillermo [1 ,4 ,5 ]
Zambrini, Roberta [2 ]
Maniscalco, Sabrina [1 ,3 ,4 ]
机构
[1] Univ Helsinki, QTF Ctr Excellence, Dept Phys, POB 43, FI-00014 Helsinki, Finland
[2] UIB CSIC, Inst Fis Interdisciplinary Sistemas Complejos IFI, Campus Univ Illes Balears, E-07122 Palma de Mallorca, Spain
[3] Aalto Univ, QTF Ctr Excellence, Sch Sci, Dept Appl Phys, FI-00076 Aalto, Finland
[4] Algorithmiq Ltd, Helsinki 00160 3C, Finland
[5] Univ Turku, Dept Math & Stat, Complex Syst Res Grp, FI-20014 Turun, Finland
来源
PRX QUANTUM | 2023年 / 4卷 / 01期
基金
芬兰科学院;
关键词
DYNAMICS; STATE; COMPUTATION; ATOMS; MAPS;
D O I
10.1103/PRXQuantum.4.010324
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Dissipative collective effects are ubiquitous in quantum physics and their relevance ranges from the study of entanglement in biological systems to noise mitigation in quantum computers. Here, we put forward the first fully quantum simulation of dissipative collective phenomena on a real quantum computer, based on the recently introduced multipartite-collision model. First, we theoretically study the accuracy of this algorithm on near-term quantum computers with noisy gates and we derive some rigorous error bounds that depend on the time step of the collision model and on the gate errors. These bounds can be employed to estimate the necessary resources for the efficient quantum simulation of the collective dynamics. Then, we implement the algorithm on some IBM quantum computers to simulate superradiance and subradiance between a pair of qubits. Our experimental results successfully display the emergence of collective effects in the quantum simulation. In addition, we analyze the noise properties of the gates that we employ in the algorithm by means of full process tomography, with the aim of improving our understanding of the errors in the near-term devices that are currently accessible to worldwide researchers. We obtain the values of the average gate fidelity, unitarity, incoherence, and diamond error and we establish a connection between them and the accuracy of the experimentally simulated state. Moreover, we build a noise model based on the results of the process tomography for two-qubit gates and show that its performance is comparable with the noise model provided by IBM. Finally, we observe that the scaling of the error as a function of the number of gates is favorable, but at the same time reaching the threshold of the diamond errors for quantum fault-tolerant computation may still be orders of magnitude away in the devices that we employ.
引用
收藏
页数:31
相关论文
共 133 条
  • [1] FAULT-TOLERANT QUANTUM COMPUTATION WITH CONSTANT ERROR RATE
    Aharonov, Dorit
    Ben-Or, Michael
    [J]. SIAM JOURNAL ON COMPUTING, 2008, 38 (04) : 1207 - 1282
  • [2] Qiskit pulse: programming quantum computers through the cloud with pulses
    Alexander, Thomas
    Kanazawa, Naoki
    Egger, Daniel J.
    Capelluto, Lauren
    Wood, Christopher J.
    Javadi-Abhari, Ali
    McKay, David C.
    [J]. QUANTUM SCIENCE AND TECHNOLOGY, 2020, 5 (04)
  • [3] Fibonacci scheme for fault-tolerant quantum computation
    Aliferis, Panos
    Preskill, John
    [J]. PHYSICAL REVIEW A, 2009, 79 (01):
  • [4] Quantum Simulators: Architectures and Opportunities
    Altman, Ehud
    Brown, Kenneth R.
    Carleo, Giuseppe
    Carr, Lincoln D.
    Demler, Eugene
    Chin, Cheng
    DeMarco, Brian
    Economou, Sophia E.
    Eriksson, Mark A.
    Fu, Kai-Mei C.
    Greiner, Markus
    Hazzard, Kaden R. A.
    Hulet, Randall G.
    Kollar, Alicia J.
    Lev, Benjamin L.
    Lukin, Mikhail D.
    Ma, Ruichao
    Mi, Xiao
    Misra, Shashank
    Monroe, Christopher
    Murch, Kater
    Nazario, Zaira
    Ni, Kang-Kuen
    Potter, Andrew C.
    Roushan, Pedram
    Saffman, Mark
    Schleier-Smith, Monika
    Siddiqi, Irfan
    Simmonds, Raymond
    Singh, Meenakshi
    Spielman, I. B.
    Temme, Kristan
    Weiss, David S.
    Vuckovic, Jelena
    Vuletic, Vladan
    Ye, Jun
    Zwierlein, Martin
    [J]. PRX QUANTUM, 2021, 2 (01):
  • [5] Anis M. S., 2021, QISKIT OPEN SOURCE F
  • [6] Quantum supremacy using a programmable superconducting processor
    Arute, Frank
    Arya, Kunal
    Babbush, Ryan
    Bacon, Dave
    Bardin, Joseph C.
    Barends, Rami
    Biswas, Rupak
    Boixo, Sergio
    Brandao, Fernando G. S. L.
    Buell, David A.
    Burkett, Brian
    Chen, Yu
    Chen, Zijun
    Chiaro, Ben
    Collins, Roberto
    Courtney, William
    Dunsworth, Andrew
    Farhi, Edward
    Foxen, Brooks
    Fowler, Austin
    Gidney, Craig
    Giustina, Marissa
    Graff, Rob
    Guerin, Keith
    Habegger, Steve
    Harrigan, Matthew P.
    Hartmann, Michael J.
    Ho, Alan
    Hoffmann, Markus
    Huang, Trent
    Humble, Travis S.
    Isakov, Sergei V.
    Jeffrey, Evan
    Jiang, Zhang
    Kafri, Dvir
    Kechedzhi, Kostyantyn
    Kelly, Julian
    Klimov, Paul V.
    Knysh, Sergey
    Korotkov, Alexander
    Kostritsa, Fedor
    Landhuis, David
    Lindmark, Mike
    Lucero, Erik
    Lyakh, Dmitry
    Mandra, Salvatore
    McClean, Jarrod R.
    McEwen, Matthew
    Megrant, Anthony
    Mi, Xiao
    [J]. NATURE, 2019, 574 (7779) : 505 - +
  • [7] Aspuru-Guzik A, 2012, NAT PHYS, V8, P285, DOI [10.1038/nphys2253, 10.1038/NPHYS2253]
  • [8] Universal simulation of Markovian quantum dynamics
    Bacon, Dave
    Childs, Andrew M.
    Chuang, Isaac L.
    Kempe, Julia
    Leung, Debbie W.
    Zhou, Xinlan
    [J]. Physical Review A. Atomic, Molecular, and Optical Physics, 2001, 64 (06): : 1 - 062302
  • [9] The thermodynamic cost of driving quantum systems by their boundaries
    Barra, Felipe
    [J]. SCIENTIFIC REPORTS, 2015, 5
  • [10] An open-system quantum simulator with trapped ions
    Barreiro, Julio T.
    Mueller, Markus
    Schindler, Philipp
    Nigg, Daniel
    Monz, Thomas
    Chwalla, Michael
    Hennrich, Markus
    Roos, Christian F.
    Zoller, Peter
    Blatt, Rainer
    [J]. NATURE, 2011, 470 (7335) : 486 - 491