GENERAL EXACT SOLVABILITY CONDITIONS FOR THE INITIAL VALUE PROBLEMS FOR LINEAR FRACTIONAL FUNCTIONAL DIFFERENTIAL EQUATIONS

被引:1
作者
Dilna, Natalia [1 ]
机构
[1] Slovak Acad Sci, Inst Math, Stefanikova 49, Bratislava 81473, Slovakia
来源
ARCHIVUM MATHEMATICUM | 2023年 / 59卷 / 01期
关键词
fractional order functional differential equations; Caputo derivative; normal and reproducing cone; unique solvability;
D O I
10.5817/AM2023-1-11
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Conditions on the unique solvability of linear fractional func-tional differential equations are established. A pantograph-type model from electrodynamics is studied.
引用
收藏
页码:11 / 19
页数:9
相关论文
共 14 条
[1]  
[Anonymous], 2017, FRACTIONAL ORDER EQU
[2]   Existence and uniqueness of symmetric solutions for fractional differential equations with multi-order fractional integral conditions [J].
Aphithana, Aphirak ;
Ntouyas, Sotiris K. ;
Tariboon, Jessada .
BOUNDARY VALUE PROBLEMS, 2015,
[3]   Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type [J].
Diethelm, Kai .
ANALYSIS OF FRACTIONAL DIFFERENTIAL EQUATIONS: AN APPLICATION-ORIENTED EXPOSITION USING DIFFERENTIAL OPERATORS OF CAPUTO TYPE, 2010, 2004 :3-+
[4]  
Dilna N., 2022, P INT C MATH AN APPL, P405, DOI [10.34630/20734, DOI 10.34630/20734]
[5]  
Dilna N., 2022, J MATH SCI-U TOKYO, V265, P577, DOI [10.1007/s10958-022-06072-8, DOI 10.1007/S10958-022-06072-8]
[6]   Exact Solvability Conditions for the Non-Local Initial Value Problem for Systems of Linear Fractional Functional Differential Equations [J].
Dilna, Natalia ;
Feckan, Michal .
MATHEMATICS, 2022, 10 (10)
[7]   Approximation approach to periodic BVP for fractional differential systems [J].
Feckan, Michal ;
Marynets, Kateryna .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2017, 226 (16-18) :3681-3692
[8]   A study on existence of solutions for fractional functional differential equations [J].
Gautam, Ganga Ram ;
Dabas, Jaydev .
COLLECTANEA MATHEMATICA, 2018, 69 (01) :25-37
[9]  
Kilbas AA., 2006, Theory and applications of fractional differential equations, DOI DOI 10.1016/S0304-0208(06)80001-0
[10]   New solvability conditions for a nonlocal boundary-value problem for nonlinear functional differential equations [J].
Oplustil, Z. .
NONLINEAR OSCILLATIONS, 2008, 11 (03) :384-406