Extending proper metrics

被引:4
作者
Ishiki, Yoshito [1 ]
机构
[1] RIKEN, Photon Control Technol Team, Ctr Adv Photon, 2-1 Hirasawa, Wako, Saitama 3510198, Japan
关键词
Tietze-Urysohn?s theorem; Proper maps; Proper metrics; Proper retracts; Extension of metrics; Ultrametrics; ZERO;
D O I
10.1016/j.topol.2022.108387
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We first prove a version of Tietze-Urysohn's theorem for proper functions taking values in non-negative real numbers defined on Sigma-compact locally compact Hausdorff spaces. As an application, we prove an extension theorem of proper metrics, which states that if X is a Sigma-compact locally compact Hausdorff space, A is a closed subset of X, and d is a proper metric on A that generates the same topology of A, then there exists a proper metric D on X such that D generates the same topology of X and D|A2 = d. Moreover, if A is a proper retract, we can choose D so that (A, d) is quasi-isometric to (X, D). We also show analogues of the theorems explained above for ultrametrizable spaces.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 23 条
[1]  
Arens R., 1952, PAC J MATH, V2, P11
[2]   EXTENDING A METRIC [J].
BING, RH .
DUKE MATHEMATICAL JOURNAL, 1947, 14 (03) :511-519
[3]   Dimension zero at all scales [J].
Brodskiy, N. ;
Dydak, J. ;
Higes, J. ;
Mitra, A. .
TOPOLOGY AND ITS APPLICATIONS, 2007, 154 (14) :2729-2740
[4]   Summary on non-Archimedean valued fields [J].
Comicheo, Angel Barria ;
Shamseddine, Khodr .
ADVANCES IN ULTRAMETRIC ANALYSIS, 2018, 704 :1-36
[5]  
de Groot J., 1956, Proc. Am. Math. Soc., V7, P948, DOI [10.2307/2033568, DOI 10.2307/2033568]
[6]   Indivisible ultrametric spaces [J].
Delhomme, Christian ;
Laflamme, Claude ;
Pouzet, Maurice ;
Sauer, Norbert .
TOPOLOGY AND ITS APPLICATIONS, 2008, 155 (14) :1462-1478
[7]   Diameter and diametrical pairs of points in ultrametric spaces [J].
Dordovskyi D. ;
Dovgoshey O. ;
Petrov E. .
P-Adic Numbers, Ultrametric Analysis, and Applications, 2011, 3 (4) :253-262
[8]  
[Довгошей Алексей Альфредович Dovgoshey Aleksei Alfredovich], 2013, [Математический сборник, Sbornik: Mathematics, Matematicheskii sbornik], V204, P51
[9]   Metrization of Weighted Graphs [J].
Dovgoshey, Oleksiy ;
Martio, Olli ;
Vuorinen, Matti .
ANNALS OF COMBINATORICS, 2013, 17 (03) :455-476
[10]  
Dugundji J, 1951, Pacific J. Math, V1, P353, DOI 10.2140/pjm.1951.1.353