Preparation and properties of flame-retardant rubber composites based on steel slag filler

被引:7
作者
Xu, Wei-cheng [1 ]
Zheng, Wei-cheng [2 ]
Zhao, Ling [2 ]
Wu, Hao-tian [1 ]
Wu, Yu-xi [1 ]
Li, Hai-li [3 ]
Zhang, Hao [1 ,2 ]
Long, Hong-ming [1 ,2 ]
机构
[1] Anhui Univ Technol, Key Lab Met Emiss Reduct & Comprehens Utilizat Res, Minist Educ, Maanshan 243002, Anhui, Peoples R China
[2] Anhui Univ Technol, Sch Met Engn, Maanshan 243032, Anhui, Peoples R China
[3] Anhui Univ Technol, Sch Civil Engn, Maanshan 243032, Anhui, Peoples R China
关键词
Steel slag; Rubber; Surface modification; Solid waste utilization; Flame-retardant composite; CARBON-BLACK; MECHANISM; CRYSTALLIZATION; NANOCOMPOSITES; GRAPHENE; CONCRETE; SILICA;
D O I
10.1007/s42243-022-00901-5
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
Ultrafine steel slag powder (shield powder) was prepared by grinding ordinary steel slag with a functional compound. As a substitute for aluminum hydroxide, the shield powder was combined with rubber to prepare flame-retardant composites. Vulcanization tests showed that the incorporation of shield powder enhances the crosslinkage of the composite and speeds up the curing rate. The gaseous products formed in the pyrolysis process are mainly hydrocarbons. Mechanical and combustion tests revealed that the introduction of shield powder improves flame-retardant performance without sacrificing mechanical properties. Specifically, the optimum substitution ratio of shield powder for aluminum hydroxide is 50.0%. In this case, the composite has the highest degree of graphitization and exhibits excellent flame-retardant performance.
引用
收藏
页码:1334 / 1341
页数:8
相关论文
共 42 条
[1]   Recycling of steel slag aggregates for the development of high density concrete: Alternative & environment-friendly radiation shielding composite [J].
Baalamurugan, J. ;
Kumar, V. Ganesh ;
Chandrasekaran, S. ;
Balasundar, S. ;
Venkatraman, B. ;
Padmapriya, R. ;
Raja, V. K. Bupesh .
COMPOSITES PART B-ENGINEERING, 2021, 216
[2]   Utilization of induction furnace steel slag in concrete as coarse aggregate for gamma radiation shielding [J].
Baalamurugan, J. ;
Kumar, V. Ganesh ;
Chandrasekaran, S. ;
Balasundar, S. ;
Venkatraman, B. ;
Padmapriya, R. ;
Raja, V. K. Bupesh .
JOURNAL OF HAZARDOUS MATERIALS, 2019, 369 :561-568
[3]   Strain-Induced Crystallization of Natural Rubber and Cross-Link Densities Heterogeneities [J].
Candau, Nicolas ;
Laghmach, Rabia ;
Chazeau, Laurent ;
Chenal, Jean-Marc ;
Gauthier, Catherine ;
Biben, Thierry ;
Munch, Etienne .
MACROMOLECULES, 2014, 47 (16) :5815-5824
[4]   Probing the Nature of Defects in Graphene by Raman Spectroscopy [J].
Eckmann, Axel ;
Felten, Alexandre ;
Mishchenko, Artem ;
Britnell, Liam ;
Krupke, Ralph ;
Novoselov, Kostya S. ;
Casiraghi, Cinzia .
NANO LETTERS, 2012, 12 (08) :3925-3930
[5]   Fire retardant synergisms between nanometric Fe2O3 and aluminum phosphinate in poly(butylene terephthalate) [J].
Gallo, E. ;
Schartel, B. ;
Braun, U. ;
Russo, P. ;
Acierno, D. .
POLYMERS FOR ADVANCED TECHNOLOGIES, 2011, 22 (12) :2382-2391
[6]   Sustainable Utilization of Steel Slag from Traditional Industry and Agriculture to Catalysis [J].
Gao, Di ;
Wang, Fu-Ping ;
Wang, Yi-Tong ;
Zeng, Ya-Nan .
SUSTAINABILITY, 2020, 12 (21) :1-9
[7]  
Grubesa I.N., 2016, CHARACTERISTICS USES
[8]   Steel slag in China: Treatment, recycling, and management [J].
Guo, Jianlong ;
Bao, Yanping ;
Wang, Min .
WASTE MANAGEMENT, 2018, 78 :318-330
[9]   SE6450硅橡胶的低温拉伸性能研究 [J].
黄艳华 ;
任玉柱 ;
赖亮庆 ;
苏正涛 ;
刘嘉 ;
王景鹤 .
特种橡胶制品, 2011, 32 (04) :38-40
[10]   Biobased polyelectrolyte multilayer-coated hollow mesoporous silica as a green flame retardant for epoxy resin [J].
Jiang, Shu-Doug ;
Tang, Gang ;
Chen, Junmin ;
Huang, Zheng-Qi ;
Hu, Yuan .
JOURNAL OF HAZARDOUS MATERIALS, 2018, 342 :689-697