Heat transfer and flow characteristics in symmetric and parallel wavy microchannel heat sinks with porous ribs

被引:32
|
作者
Wang, Shuo-Lin [1 ,2 ,3 ]
An, Di [2 ,3 ]
Yang, Yan-Ru [2 ,3 ]
Zheng, Shao-Fei [2 ,3 ]
Wang, Xiao-Dong [2 ,3 ]
Lee, Duu-Jong [4 ,5 ]
机构
[1] Inner Mongolia Univ Technol, Coll Energy & Power Engn, Hohhot 010051, Peoples R China
[2] North China Elect Power Univ, State Key Lab Alternate Elect Power Syst Renewable, Beijing 102206, Peoples R China
[3] North China Elect Power Univ, Res Ctr Engn Thermophys, Beijing 102206, Peoples R China
[4] Natl Taiwan Univ, Dept Chem Engn, Taipei 106, Taiwan
[5] City Univ Hong Kong, Dept Mech Engn, Kowloon Tang, Hong Kong, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Symmetric and parallel wavy channels; Porous fins; Permeation effect of coolant; Thermal resistance; Pressure drop; TRANSFER ENHANCEMENT; THERMAL PERFORMANCE; ENTROPY GENERATION; LAMINAR-FLOW; FLUID-FLOW; DESIGN; CHANNEL;
D O I
10.1016/j.ijthermalsci.2022.108080
中图分类号
O414.1 [热力学];
学科分类号
摘要
Based on the synergistic design concept, double-layered microchannel heat sinks with parallel and symmetric wavy porous fins are developed with the desire to simultaneously attain pressure drop reduction, heat transfer enhancement, and cooling uniformity improvement. Using a 3D fluid-solid conjugate model, the hydrodynamic and thermal details are numerically studied to compare two wavy configurations with the solid-and porous-fin designs. The results demonstrate that for wavy microchannel heat sinks, the porous-fin design can significantly enhance heat transfer performance and reduce pressure drop. The symmetric configuration yields a higher pressure drop reduction, whereas the parallel one provides a higher increment in thermal performance. As a result, using the porous design, two wavy configurations have nearly the same level of pressure drop penalty, but the parallel configuration contributes to higher thermal performance. The decreased flow rate of the channel due to the permeation of coolant fluids into porous ribs and the slip effect on the channel wall contribute to the pressure drop reduction. The permeation effect of coolant greatly restrains secondary flow characteristics induced by wavy walls which are responsible for the enhanced coolant mixing in conventional heat sinks. Consequently, the increased inlet flow velocity at a constant pumping power contributes to the improved thermal performance, namely the reduced thermal resistance and the increased Nusselt number. With a stronger coolant permeation owing to the jet-like impingement flow, the parallel configuration yields a slightly lower thermal performance compared to the symmetric configuration in the new design. Finally, the parametric analysis at a fixed pumping power is further carried out for optimizing the proposed design.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Heat transfer enhancement of symmetric and parallel wavy microchannel heat sinks with secondary branch design
    Wang, Shuo-Lin
    Zhu, Ji-Feng
    An, Di
    Zhang, Ben-Xi
    Chen, Liu-Yi
    Yang, Yan-Ru
    Zheng, Shao-Fei
    Wang, Xiao-Dong
    International Journal of Thermal Sciences, 2022, 171
  • [2] Heat transfer enhancement of symmetric and parallel wavy microchannel heat sinks with secondary branch design
    Wang, Shuo-Lin
    Zhu, Ji-Feng
    An, Di
    Zhang, Ben-Xi
    Chen, Liu-Yi
    Yang, Yan-Ru
    Zheng, Shao-Fei
    Wang, Xiao-Dong
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2022, 171
  • [3] Heat transfer and fluid flow analysis of microchannel heat sinks with periodic vertical porous ribs
    Lori, Mohammad Shamsoddini
    Vafai, Kambiz
    APPLIED THERMAL ENGINEERING, 2022, 205
  • [4] Characteristics of heat transfer and fluid flow in microchannel heat sinks with rectangular grooves and different shaped ribs
    Zhu, Qifeng
    Chang, Kunpeng
    Chen, Junjie
    Zhang, Xinmin
    Xia, Huixue
    Zhang, Hongwei
    Wang, Hua
    Li, Haixia
    Jin, Yangyang
    ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (06) : 4593 - 4609
  • [5] Flow dynamics and heat transfer in partially porous microchannel heat sinks
    Zargartalebi, Mohammad
    Azaiez, Jalel
    JOURNAL OF FLUID MECHANICS, 2019, 875 : 1035 - 1057
  • [6] LAMINAR FLOW AND HEAT-TRANSFER CHARACTERISTICS OF MICROCHANNEL HEAT SINKS COMBINED WITH RIBS AND CAVITIES FOR ELECTRONIC COOLING
    Guo, Hong-Ju
    Ye, Wei-Biao
    Huang, Si-Min
    Wu, Shu-Ying
    Peng, De-Qi
    COMPUTATIONAL THERMAL SCIENCES, 2018, 10 (02): : 103 - 119
  • [7] Research on flow and heat transfer characteristics of microchannel heat sinks with fan-shaped cavities and circular ribs
    Wu, Andong
    Cheng, Qing
    Wang, Han
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2025, 112
  • [8] Flow and heat transfer characteristics in double-layered microchannel heat sinks with porous fins
    Wang, Shuo-Lin
    Li, Xian-Yang
    Wang, Xiao-Dong
    Lu, Gui
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2018, 93 : 41 - 47
  • [9] Numerical study on heat transfer and flow characteristics of symmetric Tesla-type microchannel heat sinks
    Xia, Yongqi
    Wu, Mingtao
    Deng, Shibo
    Yuan, Gaozhan
    Zhang, Quanli
    APPLIED THERMAL ENGINEERING, 2025, 258
  • [10] A new design of double-layered microchannel heat sinks with wavy microchannels and porous-ribs
    Wang, Shuo-Lin
    Chen, Liu-Yi
    Zhang, Ben-Xi
    Yang, Yan-Ru
    Wang, Xiao-Dong
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2020, 141 (01) : 547 - 558