Efficient electrochemical CO2 reduction reaction on a robust perovskite type cathode with in-situ exsolved Fe-Ru alloy nanocatalysts

被引:0
作者
Zhang, Dong [1 ]
Yang, Wenqiang [2 ]
Wang, Zhenbin [2 ]
Ren, Cong [3 ]
Wang, Yao [1 ]
Ding, Mingyue [1 ]
Liu, Tong [1 ,4 ]
机构
[1] Wuhan Univ, Sch Power & Mech Engn, Key Lab Hydraul Machinery Transients, Minist Educ, Wuhan 430072, Hubei, Peoples R China
[2] Tech Univ Denmark, Dept Phys, DK-2800 Lyngby, Denmark
[3] Xidian Univ, Sch Adv Mat & Nanotechnol, Dept Appl Chem, Xian 710071, Peoples R China
[4] Wuhan Inst Technol, Key Lab Green Chem Proc, Key Lab Novel Reactor & Green Chem Technol Hubei P, Sch Chem Engn & Pharm,Minist Educ, Wuhan 430205, Peoples R China
基金
中国国家自然科学基金;
关键词
Carbon dioxide reduction reaction; Solid oxide electrolysis cell; Perovskite; In -situ exsolution; Cathode; SOLID OXIDE ELECTROLYZER; TOTAL-ENERGY CALCULATIONS; FUEL ELECTRODE; SUSTAINABLE FUELS; ANODE; NANOPARTICLES; CELLS; LA0.75SR0.25CR0.5MN0.5O3-DELTA; ADSORPTION; ACCURATE;
D O I
暂无
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Electrochemical carbon dioxide reduction reaction (CO2RR) via a solid oxide CO2 electrolyzer has been attracting increasing attention because it can effectively convert CO2 into high value-added chemical products and effi-ciently store the excessive electricity. However, the lack of efficient electrodes to catalyze this reaction process severely limits their practical applications. Herein, we report Ru promoted perovskite type Pr0.4Sr0.6Fe0.9-Mo0.1O3-delta with a general formula of Pr0.4Sr0.6Fe0.8Ru0.1Mo0.1O3-delta (Ru-PSFM) cathode to overcome the constraints of low current density, low Faradaic efficiency, and high overpotential of CO2RR. The cathode electrolysis current density of CO2RR at 800 degrees C and 2.0 V is considerably improved from 0.707 to 1.480 A cm-2 with an enhancement rate of 109%, while its corresponding electrode polarization resistance at 1.4 V is significantly lowered from 2.228 to 0.319 omega cm-2. Furthermore, the solid oxide CO2 electrolyzer exhibits superior stability during the operation. Distribution of relaxation times analysis results reveal that the rate-determining process, involving CO2 adsorption, dissociation, and activation on the cathode surface, is significantly activated and dramatically accelerated after Ru doping. Density function theory calculations demonstrate that the in-situ exsolved Fe-Ru alloy nanocatalyst is a more favorable site for the activation of CO2 dissociation. This work provides valuable insights into the rational design of efficient cathodes for CO2RR.
引用
收藏
页数:10
相关论文
共 64 条
  • [31] In situ exsolved FeNi3 nanoparticles on nickel doped Sr2Fe1.5Mo0.5O6- perovskite for efficient electrochemical CO2 reduction reaction
    Lv, Houfu
    Lin, Le
    Zhang, Xiaomin
    Gao, Dunfeng
    Song, Yuefeng
    Zhou, Yingjie
    Liu, Qingxue
    Wang, Guoxiong
    Bao, Xinhe
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (19) : 11967 - 11975
  • [32] Towards sustainable fuels and chemicals through the electrochemical reduction of CO2: lessons from water electrolysis
    Martin, Antonio J.
    Larrazabal, Gaston O.
    Perez-Ramirez, Javier
    [J]. GREEN CHEMISTRY, 2015, 17 (12) : 5114 - 5130
  • [33] Performance Deterioration of Ni-YSZ Anode Induced by Electrochemically Generated Steam in Solid Oxide Fuel Cells
    Matsui, Toshiaki
    Kishida, Ryo
    Kim, Jin-Young
    Muroyama, Hiroki
    Eguchi, Koichi
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (05) : B776 - B781
  • [34] In-situ exsolution of nanoparticles from Ni substituted Sr2Fe1.5Mo0.5O6 perovskite oxides with different Ni doping contents
    Meng, Xinyang
    Wang, Yao
    Zhao, Yiqian
    Zhang, Tianhang
    Yu, Na
    Chen, Xi
    Miao, Mengyu
    Liu, Tong
    [J]. ELECTROCHIMICA ACTA, 2020, 348 (348)
  • [35] MONKHORST HJ, 1976, PHYS REV B, V13, P5188, DOI [10.1103/PhysRevB.13.5188, 10.1103/PhysRevB.16.1746]
  • [36] Antiferromagnetism and p-type conductivity of nonstoichiometric nickel oxide thin films
    Napari, Mari
    Huq, Tahmida N.
    Maity, Tuhin
    Gomersall, Daisy
    Niang, Kham M.
    Barthel, Armin
    Thompson, Juliet E.
    Kinnunen, Sami
    Arstila, Kai
    Sajavaara, Timo
    Hoye, Robert L. Z.
    Flewitt, Andrew J.
    MacManus-Driscoll, Judith L.
    [J]. INFOMAT, 2020, 2 (04) : 769 - 774
  • [37] In Situ Observation of Nanoparticle Exsolution from Perovskite Oxides: From Atomic Scale Mechanistic Insight to Nanostructure Tailoring
    Neagu, Dragos
    Kyriakou, Vasileios
    Roiban, Ioan-Lucian
    Aouine, Mimoun
    Tang, Chenyang
    Caravaca, Angel
    Kousi, Kalliopi
    Schreur-Piet, Ingeborg
    Metcalfe, Ian S.
    Vernoux, Philippe
    van de Sanden, Mauritius C. M.
    Tsampas, Mihalis N.
    [J]. ACS NANO, 2019, 13 (11) : 12996 - 13005
  • [38] A B-site doped perovskite ferrate as an efficient anode of a solid oxide fuel cell with in situ metal exsolution
    Ni, Chengsheng
    Zeng, Qimiao
    He, Debo
    Peng, Luo
    Xie, Deti
    Irvine, John T. S.
    Duan, Shukai
    Ni, Jiupai
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (47) : 26944 - 26953
  • [39] Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC)
    Ni, Meng
    Leung, Michael K. H.
    Leung, Dennis Y. C.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (09) : 2337 - 2354
  • [40] The effect of potassium on the properties of PrBa1-xCo2O5+δ (x=0.00-0.10) cathodes for intermediate-temperature solid oxide fuel cells
    Pang, Shengli
    Wang, Wenzhi
    Chen, Tao
    Wang, Yonggang
    Xu, Kaijie
    Shen, Xiangqian
    Xi, Xiaoming
    Fan, Jiwei
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (31) : 13705 - 13714