Automatic monitoring of neural activity with single-cell resolution in behaving Hydra

被引:0
作者
Hanson, Alison [1 ,2 ]
Reme, Raphael [3 ]
Telerman, Noah [1 ]
Yamamoto, Wataru [1 ]
Olivo-Marin, Jean-Christophe [3 ]
Lagache, Thibault [3 ]
Yuste, Rafael [1 ]
机构
[1] Columbia Univ, Neurotechnol Ctr, Dept Biol Sci, New York, NY 10027 USA
[2] Columbia Univ, New York State Psychiat Inst, Dept Psychiat, New York, NY 10027 USA
[3] Univ Paris Cite, CNRS, UMR3691, Inst Pasteur,BioImage Anal Unit, Paris, France
关键词
NEURONAL-ACTIVITY; NERVOUS-SYSTEM; STEM-CELLS; BRAIN; TRACKING; DECONVOLUTION; INFERENCE; PLATFORM;
D O I
10.1038/s41598-024-55608-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The ability to record every spike from every neuron in a behaving animal is one of the holy grails of neuroscience. Here, we report coming one step closer towards this goal with the development of an end-to-end pipeline that automatically tracks and extracts calcium signals from individual neurons in the cnidarian Hydra vulgaris. We imaged dually labeled (nuclear tdTomato and cytoplasmic GCaMP7s) transgenic Hydra and developed an open-source Python platform (TraSE-IN) for the Tracking and Spike Estimation of Individual Neurons in the animal during behavior. The TraSE-IN platform comprises a series of modules that segments and tracks each nucleus over time and extracts the corresponding calcium activity in the GCaMP channel. Another series of signal processing modules allows robust prediction of individual spikes from each neuron's calcium signal. This complete pipeline will facilitate the automatic generation and analysis of large-scale datasets of single-cell resolution neural activity in Hydra, and potentially other model organisms, paving the way towards deciphering the neural code of an entire animal.
引用
收藏
页数:15
相关论文
共 58 条
[41]  
Prevedel R, 2014, NAT METHODS, V11, P727, DOI [10.1038/NMETH.2964, 10.1038/nmeth.2964]
[42]   Measuring and modeling whole-brain neural dynamics in Caenorhabditis elegans [J].
Randi, Francesco ;
Leifer, Andrew M. .
CURRENT OPINION IN NEUROBIOLOGY, 2020, 65 :167-175
[43]   TRACKING INTERMITTENT PARTICLES WITH SELF-LEARNED VISUAL FEATURES [J].
Reme, Raphael ;
Piriou, Victor ;
Hanson, Alison ;
Yuste, Rafael ;
Newson, Alasdair ;
Angelini, Elsa ;
Olivo-Marin, Jean-Christophe ;
Lagache, Thibault .
2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
[44]   Cell Detection with Star-Convex Polygons [J].
Schmidt, Uwe ;
Weigert, Martin ;
Broaddus, Coleman ;
Myers, Gene .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT II, 2018, 11071 :265-273
[45]  
Scholz M., 2018, Predicting natural behavior from whole-brain neural dynamics, DOI [10.1101/445643, DOI 10.1101/445643]
[46]  
Schrödel T, 2013, NAT METHODS, V10, P1013, DOI [10.1038/NMETH.2637, 10.1038/nmeth.2637]
[47]   Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp red fluorescent protein [J].
Shaner, NC ;
Campbell, RE ;
Steinbach, PA ;
Giepmans, BNG ;
Palmer, AE ;
Tsien, RY .
NATURE BIOTECHNOLOGY, 2004, 22 (12) :1567-1572
[48]   Stem cell differentiation trajectories in Hydra resolved at single-cell resolution [J].
Siebert, Stefan ;
Farrell, Jeffrey A. ;
Cazet, Jack F. ;
Abeykoon, Yashodara ;
Primack, Abby S. ;
Schnitzler, Christine E. ;
Juliano, Celina E. .
SCIENCE, 2019, 365 (6451) :341-+
[49]   Quantitative Comparison of Spot Detection Methods in Fluorescence Microscopy [J].
Smal, Ihor ;
Loog, Marco ;
Niessen, Wiro ;
Meijering, Erik .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2010, 29 (02) :282-301
[50]   Benchmarking Spike Rate Inference in Population Calcium Imaging [J].
Theis, Lucas ;
Berens, Philipp ;
Froudarakis, Emmanouil ;
Reimer, Jacob ;
Roson, Miroslav Roman ;
Baden, Tom ;
Euler, Thomas ;
Tolias, Andreas S. ;
Bethge, Matthias .
NEURON, 2016, 90 (03) :471-482