MRN-LOD: Multi-exposure Refinement Network for Low-light Object Detection

被引:2
|
作者
Singh, Kavinder [1 ]
Parihar, Anil Singh [1 ]
机构
[1] Delhi Technol Univ, Dept Comp Sci & Engn, Machine Learning Res Lab, Delhi, India
关键词
Object detection; Multi-exposure images; Adaptive refinement network; Low-light images; Computer vision; Feature extraction; IMAGE-ENHANCEMENT; FASTER; REPRESENTATION; ILLUMINATION; FEEDBACK;
D O I
10.1016/j.jvcir.2024.104079
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Low-light conditions present a myriad of intricacies for object detection, with many existing methods relying primarily on image enhancement before detection. Sometimes, the enhancement methods are unable to improve the detection performance in low-light conditions. In this paper, we present a new Multiexposure refinement network for low-light object detection (MRN-LOD) to avoid the need for enhancement before detection. The MRN-LOD contains: multi-exposure feature extractor, adaptive refinement network, and detection head. The developed multi-exposure feature extractor extracts features from the multi-exposure images generated by the low-light image. We introduced the notion of feature extraction from multi-exposure images for object detection in low light. In addition, we proposed an adaptive refinement network to refine the features of low-light images for better detection performance. The detection head uses the refined features to perform object detection. Extensive experimentation on real -world and synthetic datasets shows the superiority of the proposed MRN-LOD.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] FOLD: Low-Level Image Enhancement for Low-Light Object Detection Based on FPGA MPSoC
    Li, Xiang
    Li, Zeyu
    Zhou, Lirong
    Huang, Zhao
    ELECTRONICS, 2024, 13 (01)
  • [22] Multi-Scale Interaction Network for Low-Light Stereo Image Enhancement
    Ji, Zhicheng
    Zheng, Huan
    Zhang, Zhao
    Ye, Qiaolin
    Zhao, Yang
    Xu, Mingliang
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (01) : 3626 - 3634
  • [23] Multi-Scale Progressive Fusion Network for Low-Light Image Enhancement
    Zhang, Hongxin
    Ran, Teng
    Xiao, Wendong
    Lv, Kai
    Peng, Song
    Yuan, Liang
    Wang, Jingchuan
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [24] Enhancing object detection in low-light conditions with adaptive parallel networks
    Fu, Gui
    Chu, Hongyu
    Tu, Xiaoguang
    JOURNAL OF ELECTRONIC IMAGING, 2025, 34 (01)
  • [25] PaIaNet: position-aware and identification-aware network for low-light salient object detection
    Yue, Huihui
    Guo, Jichang
    Yin, Xiangjun
    Zhang, Yi
    Zheng, Sida
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (03) : 1137 - 1151
  • [26] An Accurate Low-light Object Detection Method Based on Pyramid Networks
    Tao Qingyang
    Ren Kun
    Feng Bo
    Gao Xuejin
    OPTOELECTRONIC IMAGING AND MULTIMEDIA TECHNOLOGY VII, 2020, 11550
  • [27] ILENet: Illumination-Modulated Laplacian-Pyramid Enhancement Network for low-light object detection
    Wang, Xiaofeng
    Yang, Rentao
    Wu, Zhize
    Sun, Lingma
    Liu, Jiashan
    Zou, Le
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 271
  • [28] PaIaNet: position-aware and identification-aware network for low-light salient object detection
    Huihui Yue
    Jichang Guo
    Xiangjun Yin
    Yi Zhang
    Sida Zheng
    International Journal of Machine Learning and Cybernetics, 2024, 15 : 1137 - 1151
  • [29] An object planar grasping pose detection algorithm in low-light scenes
    Xu F.
    Zhu Z.
    Feng C.
    Leng J.
    Zhang P.
    Yu X.
    Wang C.
    Chen X.
    Multimedia Tools and Applications, 2025, 84 (9) : 5583 - 5604
  • [30] An improved YOLOX approach for low-light and small object detection: PPE on tunnel construction sites
    Wang, Zijian
    Cai, Zixiang
    Wu, Yimin
    JOURNAL OF COMPUTATIONAL DESIGN AND ENGINEERING, 2023, 10 (03) : 1158 - 1175