MRN-LOD: Multi-exposure Refinement Network for Low-light Object Detection

被引:2
|
作者
Singh, Kavinder [1 ]
Parihar, Anil Singh [1 ]
机构
[1] Delhi Technol Univ, Dept Comp Sci & Engn, Machine Learning Res Lab, Delhi, India
关键词
Object detection; Multi-exposure images; Adaptive refinement network; Low-light images; Computer vision; Feature extraction; IMAGE-ENHANCEMENT; FASTER; REPRESENTATION; ILLUMINATION; FEEDBACK;
D O I
10.1016/j.jvcir.2024.104079
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Low-light conditions present a myriad of intricacies for object detection, with many existing methods relying primarily on image enhancement before detection. Sometimes, the enhancement methods are unable to improve the detection performance in low-light conditions. In this paper, we present a new Multiexposure refinement network for low-light object detection (MRN-LOD) to avoid the need for enhancement before detection. The MRN-LOD contains: multi-exposure feature extractor, adaptive refinement network, and detection head. The developed multi-exposure feature extractor extracts features from the multi-exposure images generated by the low-light image. We introduced the notion of feature extraction from multi-exposure images for object detection in low light. In addition, we proposed an adaptive refinement network to refine the features of low-light images for better detection performance. The detection head uses the refined features to perform object detection. Extensive experimentation on real -world and synthetic datasets shows the superiority of the proposed MRN-LOD.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] LL-WSOD: Weakly supervised object detection in low-light
    Zhang, Han
    Wang, Yongfang
    Yang, Yingjie
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2024, 98
  • [22] Low-Light Object Detection Combining Transformer and Dynamic Feature Fusion
    Cai, Teng
    Chen, Cifa
    Dong, Fangmin
    Computer Engineering and Applications, 2024, 60 (09) : 135 - 141
  • [23] PaIaNet: position-aware and identification-aware network for low-light salient object detection
    Yue, Huihui
    Guo, Jichang
    Yin, Xiangjun
    Zhang, Yi
    Zheng, Sida
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (03) : 1137 - 1151
  • [24] PaIaNet: position-aware and identification-aware network for low-light salient object detection
    Huihui Yue
    Jichang Guo
    Xiangjun Yin
    Yi Zhang
    Sida Zheng
    International Journal of Machine Learning and Cybernetics, 2024, 15 : 1137 - 1151
  • [25] Enhancing object detection in low-light conditions with adaptive parallel networks
    Fu, Gui
    Chu, Hongyu
    Tu, Xiaoguang
    JOURNAL OF ELECTRONIC IMAGING, 2025, 34 (01)
  • [26] An object planar grasping pose detection algorithm in low-light scenes
    Xu F.
    Zhu Z.
    Feng C.
    Leng J.
    Zhang P.
    Yu X.
    Wang C.
    Chen X.
    Multimedia Tools and Applications, 2025, 84 (9) : 5583 - 5604
  • [27] Low-Light Salient Object Detection by Learning to Highlight the Foreground Objects
    Lu, Xiao
    Yuan, Yulin
    Liu, Xing
    Wang, Lucai
    Zhou, Xuanyu
    Yang, Yimin
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (08) : 7712 - 7724
  • [28] ILENet: Illumination-Modulated Laplacian-Pyramid Enhancement Network for low-light object detection
    Wang, Xiaofeng
    Yang, Rentao
    Wu, Zhize
    Sun, Lingma
    Liu, Jiashan
    Zou, Le
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 271
  • [29] An Accurate Low-light Object Detection Method Based on Pyramid Networks
    Tao Qingyang
    Ren Kun
    Feng Bo
    Gao Xuejin
    OPTOELECTRONIC IMAGING AND MULTIMEDIA TECHNOLOGY VII, 2020, 11550
  • [30] MEGF-Net: multi-exposure generation and fusion network for vehicle detection under dim light conditions
    Boyang Du
    Congju Du
    Li Yu
    Visual Intelligence, 1 (1):