Hydrothermal synthesis of Ni,Co hydroxide nanosheet array on vertically suspended Ni foam for high performance supercapacitors

被引:6
作者
Chang, Jin [1 ]
Du, Xindong [1 ]
Feng, Jing [1 ]
机构
[1] Harbin Engn Univ, Coll Mat Sci & Chem Engn, Key Lab Superlight Mat & Surface Technol, Minist Educ, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Supercapacitor; Pseudocapacitor; Metal hydroxide; Ni foam; NICKEL-HYDROXIDE; BETA-NI(OH)(2); ELECTRODES;
D O I
10.1016/j.electacta.2023.143051
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Ni(OH)2 have attracted great attention as pseudocapacitor electrode materials due to its high theoretical capacitance. However, the intrinsic disadvantaged in low electronic conductivity and sluggish ion diffusion ki-netics of Ni(OH)2 limit its performance and practical application. Herein, we report a simple hydrothermal method to synthesize Co doped Ni(OH)2 and NiOOH array structure on vertical hanging Ni foam. Compared with traditional hydrothermal methods, vertical hanging Ni foam provide sufficient reaction sites and ensure fully growth of array structure, leading to large mass loading of active materials. The array structure and the wide interlayer spacing due to interlayer embedded CH3COO- together build an effcient ion diffusion path. Morevoer, strong electron exchange between Ni(OH)2 or NiOOH and Ni provide high electrical conductivity at the interface, forming the fast and complete electron transport channel inside the electrode. As a result of robust electro-chemical kinetics, NiCoLDH@vNF-12 shows a high capacitive and outstanding rate performance of 952.9 C g-1 at 1 A g-1 and 660.0 C g-1 even at 50 A g-1.
引用
收藏
页数:8
相关论文
共 46 条
[1]   Conformal coating of Ni(OH)2 nanoflakes on carbon fibers by chemical bath deposition for efficient supercapacitor electrodes [J].
Alhebshi, Nuha A. ;
Rakhi, R. B. ;
Alshareef, H. N. .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (47) :14897-14903
[2]   A controllable top-down etching and in-situ oxidizing strategy: metal-organic frameworks derived α-Co/Ni(OH)2@Co3O4 hollow nanocages for enhanced supercapacitor performance [J].
Bao, Yuxiang ;
Deng, Ying ;
Wang, Moze ;
Xiao, Zhenyu ;
Wang, Minghui ;
Fu, Yunlei ;
Guo, Ziyang ;
Yang, Yu ;
Wang, Lei .
APPLIED SURFACE SCIENCE, 2020, 504
[3]   Nickel- Cobalt Layered Double Hydroxide Nanosheets for High- performance Supercapacitor Electrode Materials [J].
Chen, Hao ;
Hu, Linfeng ;
Chen, Min ;
Yan, Yan ;
Wu, Limin .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (07) :934-942
[4]   Atomic-level energy storage mechanism of cobalt hydroxide electrode for pseudocapacitors [J].
Deng, Ting ;
Zhang, Wei ;
Arcelus, Oier ;
Kim, Jin-Gyu ;
Carrasco, Javier ;
Yoo, Seung Jo ;
Zheng, Weitao ;
Wang, Jiafu ;
Tian, Hongwei ;
Zhang, Hengbin ;
Cui, Xiaoqiang ;
Rojo, Teofilo .
NATURE COMMUNICATIONS, 2017, 8
[5]   Building vertically-structured, high-performance electrodes by interlayer-confined reactions in accordion-like, chemically expanded graphite [J].
Dong, Lei ;
Zhang, Long ;
Lin, Shan ;
Chen, Zhongxin ;
Wang, Yannan ;
Zhao, Xiaoxu ;
Wu, Tianqi ;
Zhang, Jiajia ;
Liu, Wei ;
Lu, Hongbin ;
Loh, Kian Ping .
NANO ENERGY, 2020, 70
[6]   All-solid-state planner micro-supercapacitor based on graphene/NiOOH/Ni (OH)2 via mask-free patterning strategy [J].
Feng, Xin ;
Ning, Jing ;
Wang, Dong ;
Zhang, Jincheng ;
Dong, Jianguo ;
Zhang, Chi ;
Shen, Xue ;
Hao, Yue .
JOURNAL OF POWER SOURCES, 2019, 418 :130-137
[7]   Direct growth of 2D nickel hydroxide nanosheets intercalated with polyoxovanadate anions as a binder-free supercapacitor electrode [J].
Gunjakar, Jayavant L. ;
Inamdar, Akbar I. ;
Hou, Bo ;
Cha, SeungNam ;
Pawar, S. M. ;
Abu Talha, A. A. ;
Chavan, Harish S. ;
Kim, Jongmin ;
Cho, Sangeun ;
Lee, Seongwoo ;
Jo, Yongcheol ;
Kim, Hyungsang ;
Im, Hyunsik .
NANOSCALE, 2018, 10 (19) :8953-8961
[8]   One-step electrodeposition synthesis of high performance carbon nanotubes/graphene-doped Ni(OH)2 thin film electrode for high-performance supercapacitor [J].
Han, Chong ;
Cao, Weiyi ;
Si, Huizheng ;
Wu, Yu ;
Liu, Kaiyu ;
Liu, Hongtao ;
Sang, Shangbin ;
Wu, Qiumei .
ELECTROCHIMICA ACTA, 2019, 322
[9]   The Chemistry and Promising Applications of Graphene and Porous Graphene Materials [J].
Huang, Haibo ;
Shi, Haodong ;
Das, Pratteek ;
Qin, Jieqiong ;
Li, Yaguang ;
Wang, Xiao ;
Su, Feng ;
Wen, Pengchao ;
Li, Suyuan ;
Lu, Pengfei ;
Liu, Fangyan ;
Li, Yuejiao ;
Zhang, Ying ;
Wang, Yi ;
Wu, Zhong-Shuai ;
Cheng, Hui-Ming .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (41)
[10]   Ultrafine Ni(OH)2 nanoplatelets grown on 3D graphene hydrogel fabricated by electrochemical exfoliation for high-performance battery-type asymmetric supercapacitor applications [J].
Huang, Yang ;
Buffa, Andrea ;
Deng, Haiqiang ;
Sarkar, Sujoy ;
Ouyang, Yu ;
Jiao, Xinyan ;
Hao, Qingli ;
Mandler, Daniel .
JOURNAL OF POWER SOURCES, 2019, 439