Inclusion statistics and particle condensation in two dimensions

被引:1
作者
Ouvry, Stephane [1 ]
Polychronakos, Alexios P.
机构
[1] Univ Paris Saclay, LPTMS, CNRS, F-91405 Orsay, France
关键词
BOSE-EINSTEIN CONDENSATION; FRACTIONAL-STATISTICS; GAS;
D O I
10.1103/PhysRevE.107.L062102
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We propose a type of quantum statistics which we call inclusion statistics, in which particles tend to coalesce more than ordinary bosons. Inclusion statistics is defined in analogy with exclusion statistics, in which statistical exclusion is stronger than in Fermi statistics, but now extrapolating beyond Bose statistics, resulting in statistical inclusion. A consequence of inclusion statistics is that the lowest space dimension in which particles can condense in the absence of potentials is d = 2, unlike d = 3 for the usual Bose-Einstein condensation. This reduction in the dimension happens for any inclusion stronger than bosons, and the critical temperature increases with stronger inclusion. Possible physical realizations of inclusion statistics involving attractive interactions between bosons may be experimentally achievable.
引用
收藏
页数:6
相关论文
共 14 条
[1]   OBSERVATION OF BOSE-EINSTEIN CONDENSATION IN A DILUTE ATOMIC VAPOR [J].
ANDERSON, MH ;
ENSHER, JR ;
MATTHEWS, MR ;
WIEMAN, CE ;
CORNELL, EA .
SCIENCE, 1995, 269 (5221) :198-201
[2]  
[Anonymous], 1995, MOD PHYS LETT B, V09, P271
[3]   Bose-Einstein condensation in a dilute gas; The first 70 years and some recent experiments [J].
Cornell, EA ;
Wieman, CE .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2002, 16 (30) :4503-4536
[4]   BOSE-EINSTEIN CONDENSATION IN A GAS OF SODIUM ATOMS [J].
DAVIS, KB ;
MEWES, MO ;
ANDREWS, MR ;
VANDRUTEN, NJ ;
DURFEE, DS ;
KURN, DM ;
KETTERLE, W .
PHYSICAL REVIEW LETTERS, 1995, 75 (22) :3969-3973
[5]  
DEVEIGY AD, 1995, MOD PHYS LETT A, V10, P1, DOI 10.1142/S0217732395000028
[6]   EQUATION OF STATE OF AN ANYON GAS IN A STRONG MAGNETIC-FIELD [J].
DEVEIGY, AD ;
OUVRY, S .
PHYSICAL REVIEW LETTERS, 1994, 72 (05) :600-603
[7]   FRACTIONAL STATISTICS IN ARBITRARY DIMENSIONS - A GENERALIZATION OF THE PAULI PRINCIPLE [J].
HALDANE, FDM .
PHYSICAL REVIEW LETTERS, 1991, 67 (08) :937-940
[8]   FEYNMAN FUNCTIONAL INTEGRALS FOR SYSTEMS OF INDISTINGUISHABLE PARTICLES [J].
LAIDLAW, MGG ;
DEWITT, CM .
PHYSICAL REVIEW D, 1971, 3 (06) :1375-&
[9]   Phenomenological formula for quantum Hall resistivity based on the Riemann zeta function [J].
LeClair, Andre .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2023, 2023 (02)
[10]   THEORY OF IDENTICAL PARTICLES [J].
LEINAAS, JM ;
MYRHEIM, J .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1977, 37 (01) :1-23