Phosphate-based geopolymer: Influence of municipal solid waste fly ash introduction on structure and compressive strength

被引:14
作者
Bernasconi, Davide [1 ]
Viani, Alberto [2 ]
Zarybnicka, Lucie [2 ]
Macova, Petra [2 ]
Bordignon, Simone [3 ]
Caviglia, Caterina [1 ]
Destefanis, Enrico [1 ]
Gobetto, Roberto [3 ]
Pavese, Alessandro [1 ]
机构
[1] Univ Turin, Earth Sci Dept, I-10125 Turin, Italy
[2] Czech Acad Sci, Inst Theoret & Appl Mech, Ctr Telc, Proseck 809-76, Prague 19000 9, Czech Republic
[3] Univ Turin, Chem Dept, I-10125 Turin, Italy
关键词
Phosphate geopolymers; Municipal solid waste fly ash; Metakaolin; Phosphate cement; ACID-BASED GEOPOLYMERS; NMR; BRUSHITE; CEMENT;
D O I
10.1016/j.ceramint.2023.04.042
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Materials resulting from incorporation of solid waste incineration fly ash into phosphate-based geopolymers, to partially replace metakaolin (up to 50% wt), were studied. X-ray diffraction, scanning electron microscopy, solid-state nuclear magnetic resonance spectroscopy and infrared spectroscopy were adopted to describe the miner-alogical changes and the structural modifications of the geopolymer networks which impacted on the mechanical performance (compressive strength) of the materials. The results indicated that fly ash displays a different reactivity compared with metakaolin, behaving preferentially as a source of alkali that compete with the aluminosilicate metakaolin fraction by precipitating crystalline and amorphous phosphates. At 10 wt% of metakaolin substitution with fly ash, the extent and reticulation of the amorphous geopolymer matrix is pre-served, and the mechanical properties are retained. At higher waste content (30-50% wt), the fast kinetics of the acid-base reactions involving the fly ash reactive phases prevail over the metakaolin dealumination, and the nature of the material shifts to an alkali-phosphate cement/phosphate-geopolymer composite. This behaviour, together with the development of porosity and presence of low-strength phases in the ash, led to a decline in the mechanical performance with increasing amount of substitution. All in all, this work provides fundamental in-formation in the direction of a sustainable employment of phosphate-based geopolymers, which is limited by the relatively high cost of both metakaolin and phosphoric acid. Moreover, it indicates a recycling opportunity for this type of fly ash.
引用
收藏
页码:22149 / 22159
页数:11
相关论文
共 50 条
  • [21] Utilization of Municipal Solid Waste Incineration (MSWIFA) in Geopolymer Concrete: A Study on Compressive Strength and Leaching Characteristics
    Xu, Qiyong
    Shang, Ning
    Ko, Jae Hac
    MATERIALS, 2024, 17 (18)
  • [22] Comparison between geopolymer reaction and cement hydration in solidification of fly ash generated in municipal solid waste incineration
    Zheng, Lei
    Zhou, Xia
    Zhang, Xinyi
    REVUE DES COMPOSITES ET DES MATERIAUX AVANCES-JOURNAL OF COMPOSITE AND ADVANCED MATERIALS, 2018, 28 (03): : 395 - 403
  • [23] Possibilities of municipal solid waste incinerator fly ash utilisation
    Hartmann, Silvie
    Koval', Lukas
    Skrobankova, Hana
    Matysek, Dalibor
    Winter, Franz
    Purgar, Amon
    WASTE MANAGEMENT & RESEARCH, 2015, 33 (08) : 740 - 747
  • [24] The influence of ambient pH on fly ash-based geopolymer
    Anh Duong Nguyen
    Skvara, Frantisek
    CEMENT & CONCRETE COMPOSITES, 2016, 72 : 275 - 283
  • [25] The cement solidification of municipal solid waste incineration fly ash
    Hou Haobo
    He Xinghua
    Zhu Shujing
    Zhang Dajie
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2006, 21 (04): : 137 - 140
  • [26] The cement solidification of municipal solid waste incineration fly ash
    Hou H.
    He X.
    Zhu S.
    Zhang D.
    Journal of Wuhan University of Technology-Mater. Sci. Ed., 2006, 21 (4): : 137 - 140
  • [27] The Cement Solidification of Municipal Solid Waste Incineration Fly Ash
    侯浩波
    贺杏华
    Journal of Wuhan University of Technology(Materials Science), 2006, (04) : 137 - 140
  • [28] A review on the management of municipal solid waste fly ash in American
    Sun, Xiaofei
    Li, Jinhui
    Zhao, Xiangdong
    Zhu, Baoli
    Zhang, Guoliang
    SELECTED PROCEEDINGS OF THE TENTH INTERNATIONAL CONFERENCE ON WASTE MANAGEMENT AND TECHNOLOGY, 2016, 31 : 535 - 540
  • [29] Compressive strength of fly ash-based geopolymer concrete with crumb rubber partially replacing sand
    Park, Yeonho
    Abolmaali, Ali
    Kim, Young Hoon
    Ghahremannejad, Masoud
    CONSTRUCTION AND BUILDING MATERIALS, 2016, 118 : 43 - 51
  • [30] Influences of characteristics of the alkaline activator on the compressive strength and microstructure of the fly ash-based geopolymer pastes
    Tian, Qingbo
    Sun, Daquan
    Gua, Zeyu
    Lv, Zhijie
    JOURNAL OF CERAMIC PROCESSING RESEARCH, 2020, 21 (03): : 358 - 364