Chemical Reaction Networks Explain Gas Evolution Mechanisms in Mg-Ion Batteries

被引:20
|
作者
Spotte-Smith, Evan Walter Clark [1 ,2 ]
Blau, Samuel M. [3 ]
Barter, Daniel [3 ]
Leon, Noel J. [4 ]
Hahn, Nathan T. [5 ]
Redkar, Nikita S. [6 ]
Zavadil, Kevin R. [5 ]
Liao, Chen [4 ]
Persson, Kristin A. [2 ,7 ]
机构
[1] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[3] Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources, Berkeley, CA 94720 USA
[4] Argonne Natl Lab, Lemont, IL 60439 USA
[5] Sandia Natl Labs, Mat Phys & Chem Sci Ctr, Albuquerque, NM 87123 USA
[6] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA
[7] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA
关键词
STOCHASTIC SIMULATION; MAGNESIUM; STABILITY; CHEMISTRY; SOLVENTS; SURFACE; HYBRID; STATE; ELECTROLYTES; PREDICTION;
D O I
10.1021/jacs.3c02222
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Out-of-equilibrium electrochemical reaction mechanismsare notoriouslydifficult to characterize. However, such reactions are critical fora range of technological applications. For instance, in metal-ionbatteries, spontaneous electrolyte degradation controls electrodepassivation and battery cycle life. Here, to improve our abilityto elucidate electrochemical reactivity, we for the first time combinecomputational chemical reaction network (CRN) analysis based on densityfunctional theory (DFT) and differential electrochemical mass spectroscopy(DEMS) to study gas evolution from a model Mg-ion battery electrolyte-magnesium bistriflimide (Mg-(TFSI)(2)) dissolved in diglyme (G2). AutomatedCRN analysis allows for the facile interpretation of DEMS data, revealingH(2)O, C2H4, and CH3OH asmajor products of G2 decomposition. These findings are further explainedby identifying elementary mechanisms using DFT. While TFSI- is reactive at Mg electrodes, we find that it does not meaningfullycontribute to gas evolution. The combined theoretical-experimentalapproach developed here provides a means to effectively predict electrolytedecomposition products and pathways when initially unknown.
引用
收藏
页码:12181 / 12192
页数:12
相关论文
共 50 条
  • [1] Operando X-ray Diffraction Studies of the Mg-Ion Migration Mechanisms in Spinel Cathodes for Rechargeable Mg-Ion Batteries
    Yin, Liang
    Kwon, Bob Jin
    Choi, Yunyeong
    Bartel, Christopher J.
    Yang, Mengxi
    Liao, Chen
    Key, Baris
    Ceder, Gerbrand
    Lapidus, Saul H.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (28) : 10649 - 10658
  • [2] Evolution of the Dynamic Solid Electrolyte Interphase in Mg Electrolytes for Rechargeable Mg-Ion Batteries
    Fan, Shengqi
    Cora, Saida
    Sa, Niya
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (41) : 46635 - 46645
  • [3] Potential use of silicon carbide monolayer as an anode in rechargeable Mg-ion batteries
    Kadhim, Mustafa M.
    Taban, Taleeb Zedan
    Abdullaha, Sallal A. H.
    Rheima, Ahmed Mahdi
    Hachim, Safa K.
    Abed, Azher M.
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2023, 177
  • [4] Graphyne as an anode material for Mg-ion batteries: A computational study
    Mao, Yingling
    Soleymanabadi, Hamed
    JOURNAL OF MOLECULAR LIQUIDS, 2020, 308
  • [5] Hexa-cata-hexabenzocoronene nanographene as a promising anode material for Mg-ion batteries
    Hashemzadeh, Behlol
    Edjlali, Ladan
    Nezhad, Parvaneh Delir Kheirollahi
    Vessally, Esmail
    JOURNAL OF MOLECULAR MODELING, 2021, 27 (02)
  • [6] Insights into the Reaction Mechanisms of Nongraphitic High-Surface Porous Carbons for Application in Na- and Mg-Ion Batteries
    Rubio, Saul
    Ruiz, Rafaela
    Zuo, Wenhua
    Li, Yixiao
    Liang, Ziteng
    Cosano, Daniel
    Gao, Jun
    Yang, Yong
    Ortiz, Gregorio F.
    Ortiz, Gregorio F.
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (38) : 43127 - 43140
  • [7] Nanostructured Layered Cathode for Rechargeable Mg-Ion Batteries
    Tepavcevic, Sanja
    Liu, Yuzi
    Zhou, Dehua
    Lai, Barry
    Maser, Jorg
    Zuo, Xiaobing
    Chan, Henry
    Kral, Petr
    Johnson, Christopher S.
    Stamenkovic, Vojislav
    Markovic, Nenad M.
    Rajh, Tijana
    ACS NANO, 2015, 9 (08) : 8194 - 8205
  • [8] High capacity positive electrodes for secondary Mg-ion batteries
    Rasul, Shahid
    Suzuki, Shinya
    Yamaguchi, Shu
    Miyayama, Masaru
    ELECTROCHIMICA ACTA, 2012, 82 : 243 - 249
  • [9] A computational study on the potential application of zigzag carbon nanotubes in Mg-ion batteries
    Aslanzadeh, Saeed Amir
    STRUCTURAL CHEMISTRY, 2020, 31 (03) : 1073 - 1078
  • [10] Olivine FePO4 Cathode Material for Rechargeable Mg-Ion Batteries
    Shan, Peng
    Gu, Yue
    Yang, Luyi
    Liu, Tongchao
    Zheng, Jiaxin
    Pan, Feng
    INORGANIC CHEMISTRY, 2017, 56 (21) : 13411 - 13416