Occluded Facial Expression Recognition Using Self-supervised Learning

被引:0
作者
Wang, Jiahe [1 ]
Ding, Heyan [1 ]
Wang, Shangfei [1 ,2 ]
机构
[1] Univ Sci & Technol China, Key Lab Comp & Commun Software Anhui Prov, Hefei, Peoples R China
[2] Univ Sci & Technol China, Anhui Robot Technol Standard Innovat Base, Hefei, Peoples R China
来源
COMPUTER VISION - ACCV 2022, PT IV | 2023年 / 13844卷
基金
中国国家自然科学基金;
关键词
Occluded facial expression recognition; Self-supervised learning; Representation learning; DEEP;
D O I
10.1007/978-3-031-26316-3_8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent studies on occluded facial expression recognition typically required fully expression-annotated facial images for training. However, it is time consuming and expensive to collect a large number of facial images with various occlusions and expression annotations. To address this problem, we propose an occluded facial expression recognition method through self-supervised learning, which leverages the profusion of available unlabeled facial images to explore robust facial representations. Specifically, we generate a variety of occluded facial images by randomly adding occlusions to unlabeled facial images. Then we define occlusion prediction as the pretext task for representation learning. We also adopt contrastive learning to make facial representation of a facial image and those of its variations with synthesized occlusions close. Finally, we train an expression classifier as the downstream task. The experimental results on several databases containing both synthesized and realistic occluded facial images demonstrate the superiority of the proposed method over state-of-the-art methods.
引用
收藏
页码:121 / 136
页数:16
相关论文
共 21 条
  • [21] Deep Multi-task Learning for Facial Expression Recognition and Synthesis Based on Selective Feature Sharing
    Zhao, Rui
    Liu, Tianshan
    Xiao, Jun
    Lun, Daniel P. K.
    Lam, Kin-Man
    [J]. 2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 4412 - 4419