Predicting peritoneal recurrence in gastric cancer with serosal invasion using a pathomics nomogram

被引:13
作者
Chen, Dexin [1 ]
Lai, Jianbo [1 ]
Cheng, Jiaxin [1 ]
Fu, Meiting [2 ]
Lin, Liyan [3 ]
Chen, Feng [4 ]
Huang, Rong [1 ]
Chen, Jun [1 ]
Lu, Jianping [2 ]
Chen, Yuning [1 ]
Huang, Guangyao [1 ]
Yan, Miaojia [1 ]
Ma, Xiaodan [1 ]
Li, Guoxin [1 ]
Chen, Gang [3 ]
Yan, Jun [1 ]
机构
[1] Southern Med Univ, Nanfang Hosp, Sch Clin Med 1, Dept Gen Surg,Guangdong Prov Key Lab Precis Med Ga, Guangzhou 510515, Peoples R China
[2] Southern Med Univ, Nanfang Hosp, Sch Clin Med 1, Dept Gastroenterol,Guangdong Prov Key Lab Gastroen, Guangzhou 510515, Peoples R China
[3] Fujian Med Univ, Fujian Canc Hosp, Dept Pathol, Fujian Prov Key Lab Translat Canc Med,Clin Oncol S, Fuzhou 350014, Peoples R China
[4] Fujian Med Univ, Dept Oncol Surg, Affiliated Hosp 2, Quanzhou 362000, Peoples R China
基金
中国国家自然科学基金;
关键词
INTRAPERITONEAL CHEMOTHERAPY; MODEL; COLOCALIZATION; METASTASIS; SELECTION; SURGERY; LASSO;
D O I
10.1016/j.isci.2023.106246
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Peritoneal recurrence is the most frequent and lethal recurrence pattern in gastric cancer (GC) with serosal invasion after radical surgery. However, current evaluation methods are not adequate for predicting peritoneal recurrence in GC with serosal invasion. Emerging evidence shows that pathomics analyses could be advantageous for risk stratification and outcome prediction. Herein, we propose a pathomics signature composed of multiple pathomics features extracted from digital hematoxylin and eosin-stained images. We found that the pathomics signature was significantly associated with peritoneal recurrence. A competing-risk pathomics nomogram including carbohydrate antigen 19-9 level, depth of invasion, lymph node metastasis, and pathomics signature was developed for predicting peritoneal recurrence. The pathomics nomogram had favorable discrimination and calibration. Thus, the pathomics signature is a predictive indicator of peritoneal recurrence, and the pathomics nomogram may provide a helpful reference for predicting an individual's risk in peritoneal recurrence of GC with serosal invasion.
引用
收藏
页数:19
相关论文
共 50 条
[11]   A nomogram for predicting the recurrence of small bowel obstruction after gastrectomy in patients with gastric cancer [J].
Yu, Wenhao ;
Zhang, Qi ;
Ali, Muhammad ;
Chen, Bangquan ;
Yang, Yapeng ;
Wang, Liuhua ;
Sun, Qiannan ;
Wang, Yong ;
Wang, Daorong .
WORLD JOURNAL OF SURGICAL ONCOLOGY, 2023, 21 (01)
[12]   Risk stratification for predicting postoperative recurrence of gastric cancer by grade of venous invasion [J].
Yasuo Imai ;
Yoshihiro Kurata ;
Masanori Ichinose .
BMC Gastroenterology, 23
[13]   Risk stratification for predicting postoperative recurrence of gastric cancer by grade of venous invasion [J].
Imai, Yasuo ;
Kurata, Yoshihiro ;
Ichinose, Masanori .
BMC GASTROENTEROLOGY, 2023, 23 (01)
[14]   Intraoperative dissemination during gastrectomy for gastric cancer associated with serosal invasion [J].
Tokumitsu, Yukio ;
Yoshino, Shigefumi ;
Iida, Michihisa ;
Yoshimura, Kiyoshi ;
Ueno, Tomio ;
Hazama, Shoichi ;
Oka, Masaaki .
SURGERY TODAY, 2015, 45 (06) :746-751
[15]   Real-time optical diagnosis of gastric cancer with serosal invasion using multiphoton imaging [J].
Yan, Jun ;
Zheng, Yu ;
Zheng, Xiaoling ;
Liu, Zhangyuanzhu ;
Liu, Wenju ;
Chen, Dexin ;
Dong, Xiaoyu ;
Li, Kai ;
Liu, Xiumin ;
Chen, Gang ;
Lu, Jianping ;
Chen, Jianxin ;
Zhuo, Shuangmu ;
Li, Guoxin .
SCIENTIFIC REPORTS, 2016, 6
[16]   A nomogram to predict prognosis for gastric cancer with peritoneal dissemination [J].
Chen, Shi ;
Chen, Xijie ;
Nie, Runcong ;
Yang, Liying Ou ;
Liu, Aihong ;
Li, Yuanfang ;
Zhou, Zhiwei ;
Chen, Yingbo ;
Peng, Junsheng .
CHINESE JOURNAL OF CANCER RESEARCH, 2018, 30 (04) :449-459
[17]   Factors predicting peritoneal recurrence in advanced gastric cancer: implication for adjuvant intraperitoneal chemotherapy [J].
Ju-Hee Lee ;
Sang-Yong Son ;
Chang Min Lee ;
Sang Hoon Ahn ;
Do Joong Park ;
Hyung-Ho Kim .
Gastric Cancer, 2014, 17 :529-536
[18]   Predicting peritoneal recurrence and disease-free survival from CT images in gastric cancer with multitask deep learning: a retrospective study [J].
Jiang, Yuming ;
Zhang, Zhicheng ;
Yuan, Qingyu ;
Wang, Wei ;
Wang, Hongyu ;
Li, Tuanjie ;
Huang, Weicai ;
Xie, Jingjing ;
Chen, Chuanli ;
Sun, Zepang ;
Yu, Jiang ;
Xu, Yikai ;
Poultsides, George A. ;
Xing, Lei ;
Zhou, Zhiwei ;
Li, Guoxin ;
Li, Ruijiang .
LANCET DIGITAL HEALTH, 2022, 4 (05) :E340-E350
[19]   Nomogram for predicting recurrence in stage II colorectal cancer [J].
Hoshino, Nobuaki ;
Hasegawa, Suguru ;
Hida, Koya ;
Kawada, Kenji ;
Ganeko, Riki ;
Sugihara, Kenichi ;
Sakai, Yoshiharu .
ACTA ONCOLOGICA, 2016, 55 (12) :1414-1417
[20]   Intraoperatively Assessed Macroscopic Serosal Changes in Patients with Curatively Resected Advanced Gastric Cancer: Clinical Implications for Prognosis and Peritoneal Recurrence [J].
Yoo, Changhoon ;
Ryu, Min-Hee ;
Park, Young Soo ;
Yoo, Moon-Won ;
Park, Sook Ryun ;
Ryoo, Baek-Yeol ;
Jang, Se Jin ;
Yook, Jeong Hwan ;
Kim, Byung Sik ;
Kang, Yoon-Koo .
ANNALS OF SURGICAL ONCOLOGY, 2015, 22 (09) :2940-2947