LAG-3 transcriptomic expression patterns across malignancies: Implications for precision immunotherapeutics

被引:15
作者
Adashek, Jacob J. [1 ]
Kato, Shumei [2 ,3 ,10 ,11 ]
Nishizaki, Daisuke [2 ,3 ]
Miyashita, Hirotaka [4 ]
De, Pradip [5 ]
Lee, Suzanna [2 ,3 ]
Pabla, Sarabjot [6 ]
Nesline, Mary [6 ]
Conroy, Jeffrey M. [6 ]
DePietro, Paul [6 ]
Lippman, Scott [2 ,3 ]
Kurzrock, Razelle [7 ,8 ,9 ]
机构
[1] Johns Hopkins Univ Hosp, Sidney Kimmel Comprehens Canc Ctr, Dept Oncol, Baltimore, MD 21231 USA
[2] Univ Calif San Diego, Moores Canc Ctr, Ctr Personalized Canc Therapy, La Jolla, CA USA
[3] Univ Calif San Diego, Moores Canc Ctr, Dept Med, Div Hematol & Oncol, La Jolla, CA USA
[4] Dartmouth Canc Ctr, Hematol & Med Oncol, Lebanon, NH USA
[5] Avera Canc Inst, Sioux Falls, SD USA
[6] OmniSeq Inc, Buffalo, NY USA
[7] WIN Consortium, San Diego, CA USA
[8] MCW Canc Ctr, Dept Oncol, Milwaukee, WI USA
[9] Univ Nebraska, Dept Oncol, Omaha, NE USA
[10] Univ Calif San Diego, Moores Canc Ctr, Ctr Personalized Canc Therapy, 3855 Hlth Sci Dr, La Jolla, CA 92093 USA
[11] Univ Calif San Diego, Moores Canc Ctr, Dept Med, Div Hematol & Oncol, 3855 Hlth Sci Dr, La Jolla, CA 92093 USA
来源
CANCER MEDICINE | 2023年 / 12卷 / 12期
关键词
biomarkers; clinical trials; experimental therapeutics; immune checkpoints; immunology; TUMOR MUTATIONAL BURDEN; CANCER;
D O I
10.1002/cam4.6000
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background Lymphocyte activation gene 3 (LAG-3) or CD223 is a transmembrane protein that serves as an immune checkpoint which attenuates T-cell activation. Many clinical trials of LAG-3 inhibitors have had modest effects, but recent data indicate that the LAG-3 antibody relatlimab, together with nivolumab (anti-PD-1), provided greater benefit than nivolumab alone in patients with melanoma.Methods In this study, the RNA expression levels of 397 genes were assessed in 514 diverse cancers at a clinical-grade laboratory (OmniSeq: ). Transcript abundance was normalized to internal housekeeping gene profiles and ranked (0-100 percentile) using a reference population (735 tumors; 35 histologies).Results A total of 116 of 514 tumors (22.6%) had high LAG-3 transcript expression (=75 percentile rank). Cancers with the greatest proportion of high LAG-3 transcripts were neuroendocrine (47% of patients) and uterine (42%); colorectal had among the lowest proportion of high LAG-3 expression (15% of patients) (all p < 0.05 multivariate); 50% of melanomas were high LAG-3 expressors. There was significant independent association between high LAG-3 expression and high expression of other checkpoints, including programmed death-ligand 1 (PD-L1), PD-1, and CTLA-4, as well as high tumor mutational burden (TMB) = 10 mutations/megabase, a marker for immunotherapy response (all p < 0.05 multivariate). However, within all tumor types, there was inter-patient variability in LAG-3 expression level.Conclusions Prospective studies are therefore needed to determine if high levels of the LAG-3 checkpoint are responsible for resistance to anti-PD-1/PD-L1 or anti-CTLA-4 antibodies. Furthermore, a precision/personalized immunotherapy approach may require interrogating individual tumor immunograms to match patients to the right combination of immunotherapeutic agents for their malignancy.
引用
收藏
页码:13155 / 13166
页数:12
相关论文
共 37 条
[11]   The effect of immune microenvironment on the progression and prognosis of colorectal cancer [J].
Chen, Jinxiang ;
Chen, Zihua .
MEDICAL ONCOLOGY, 2014, 31 (08)
[12]   Results from a phase II study of eftilagimod alpha (soluble LAG-3 protein) and pembrolizumab in patients with PD-L1 unselected metastatic non-small cell lung carcinoma. [J].
Clay, Timothy Dudley ;
Majem, Margarita ;
Felip, Enriqueta ;
Doger, Bernard ;
Costa, Enric Carcereny ;
Forster, Martin ;
Krebs, Matthew ;
Peguero, Julio Antonio ;
Mueller, Christian ;
Triebel, Frederic .
JOURNAL OF CLINICAL ONCOLOGY, 2021, 39 (15)
[13]   Analytical Validation of a Next-Generation Sequencing Assay to Monitor Immune Responses in Solid Tumors [J].
Conroy, Jeffrey M. ;
Pabla, Sarabjot ;
Glenn, Sean T. ;
Burgher, Blake ;
Nesline, Mary ;
Papanicolau-Sengos, Antonios ;
Andreas, Jonathan ;
Giamo, Vincent ;
Lenzo, Felicia L. ;
Hyland, Fiona C. L. ;
Omilian, Angela ;
Bshara, Wiam ;
Qin, Moachun ;
He, Ji ;
Puzanov, Igor ;
Ernstoff, Marc S. ;
Gardner, Mark ;
Galluzzi, Lorenzo ;
Morrison, Carl .
JOURNAL OF MOLECULAR DIAGNOSTICS, 2018, 20 (01) :95-109
[14]   Tumor Mutational Burden as an Independent Predictor of Response to Immunotherapy in Diverse Cancers [J].
Goodman, Aaron M. ;
Kato, Shumei ;
Bazhenova, Lyudmila ;
Patel, Sandip P. ;
Frampton, Garrett M. ;
Miller, Vincent ;
Stephens, Philip J. ;
Daniels, Gregory A. ;
Kurzrock, Razelle .
MOLECULAR CANCER THERAPEUTICS, 2017, 16 (11) :2598-2608
[15]   Diagnosis of fusion genes using targeted RNA sequencing [J].
Heyer, Erin E. ;
Deveson, Ira W. ;
Wooi, Danson ;
Selinger, Christina, I ;
Lyons, Ruth J. ;
Hayes, Vanessa M. ;
O'Toole, Sandra A. ;
Ballinger, Mandy L. ;
Gill, Devinder ;
Thomas, David M. ;
Mercer, Tim R. ;
Blackburn, James .
NATURE COMMUNICATIONS, 2019, 10 (1)
[16]   Expression of TIM3/VISTA checkpoints and the CD68 macrophage-associated marker correlates with anti-PD1/PDL1 resistance: implications of immunogram heterogeneity [J].
Kato, Shumei ;
Okamura, Ryosuke ;
Kumaki, Yuichi ;
Ikeda, Sadakatsu ;
Nikanjam, Mina ;
Eskander, Ramez ;
Goodman, Aaron ;
Lee, Suzanna ;
Glenn, Sean T. ;
Dressman, Devin ;
Papanicolau-Sengos, Antonios ;
Lenzo, Felicia L. ;
Morrison, Carl ;
Kurzrock, Razelle .
ONCOIMMUNOLOGY, 2020, 9 (01)
[17]   PD-1 Blockade in Tumors with Mismatch-Repair Deficiency [J].
Le, D. T. ;
Uram, J. N. ;
Wang, H. ;
Bartlett, B. R. ;
Kemberling, H. ;
Eyring, A. D. ;
Skora, A. D. ;
Luber, B. S. ;
Azad, N. S. ;
Laheru, D. ;
Biedrzycki, B. ;
Donehower, R. C. ;
Zaheer, A. ;
Fisher, G. A. ;
Crocenzi, T. S. ;
Lee, J. J. ;
Duffy, S. M. ;
Goldberg, R. M. ;
de la Chapelle, A. ;
Koshiji, M. ;
Bhaijee, F. ;
Huebner, T. ;
Hruban, R. H. ;
Wood, L. D. ;
Cuka, N. ;
Pardoll, D. M. ;
Papadopoulos, N. ;
Kinzler, K. W. ;
Zhou, S. ;
Cornish, T. C. ;
Taube, J. M. ;
Anders, R. A. ;
Eshleman, J. R. ;
Vogelstein, B. ;
Diaz, L. A., Jr. .
NEW ENGLAND JOURNAL OF MEDICINE, 2015, 372 (26) :2509-2520
[18]   Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade [J].
Le, Dung T. ;
Durham, Jennifer N. ;
Smith, Kellie N. ;
Wang, Hao ;
Bartlett, Bjarne R. ;
Aulakh, Laveet K. ;
Lu, Steve ;
Kemberling, Holly ;
Wilt, Cara ;
Luber, Brandon S. ;
Wong, Fay ;
Azad, Nilofer S. ;
Rucki, Agnieszka A. ;
Laheru, Dan ;
Donehower, Ross ;
Zaheer, Atif ;
Fisher, George A. ;
Crocenzi, Todd S. ;
Lee, James J. ;
Greten, Tim F. ;
Duffy, Austin G. ;
Ciombor, Kristen K. ;
Eyring, Aleksandra D. ;
Lam, Bao H. ;
Joe, Andrew ;
Kang, S. Peter ;
Holdhoff, Matthias ;
Danilova, Ludmila ;
Cope, Leslie ;
Meyer, Christian ;
Zhou, Shibin ;
Goldberg, Richard M. ;
Armstrong, Deborah K. ;
Bever, Katherine M. ;
Fader, Amanda N. ;
Taube, Janis ;
Housseau, Franck ;
Spetzler, David ;
Xiao, Nianqing ;
Pardoll, Drew M. ;
Papadopoulos, Nickolas ;
Kinzler, Kenneth W. ;
Eshleman, James R. ;
Vogelstein, Bert ;
Anders, Robert A. ;
Diaz, Luis A., Jr. .
SCIENCE, 2017, 357 (6349) :409-413
[19]   Synthetic lethality-mediated precision oncology via the tumor transcriptome [J].
Lee, Joo Sang ;
Nair, Nishanth Ulhas ;
Dinstag, Gal ;
Chapman, Lesley ;
Chung, Youngmin ;
Wang, Kun ;
Sinha, Sanju ;
Cha, Hongui ;
Kim, Dasol ;
Schperberg, Alexander, V ;
Srinivasan, Ajay ;
Lazar, Vladimir ;
Rubin, Eitan ;
Hwang, Sohyun ;
Berger, Raanan ;
Beker, Tuvik ;
Ronai, Ze'ev ;
Hannenhalli, Sridhar ;
Gilbert, Mark R. ;
Kurzrock, Razelle ;
Lee, Se-Hoon ;
Aldape, Kenneth ;
Ruppin, Eytan .
CELL, 2021, 184 (09) :2487-+
[20]   Multiomics Prediction of Response Rates to Therapies to Inhibit Programmed Cell Death 1 and Programmed Cell Death 1 Ligand 1 [J].
Lee, Joo Sang ;
Ruppin, Eytan .
JAMA ONCOLOGY, 2019, 5 (11) :1614-1618