Quantum Stirling engine based on dinuclear metal complexes

被引:12
作者
Cruz, Clebson [1 ]
Rastegar-Sedehi, Hamid-Reza [2 ]
Anka, Maron F. [3 ]
de Oliveira, Thiago R. [3 ]
Reis, Mario [3 ,4 ]
机构
[1] Univ Fed Oeste Bahia, Ctr Ciencias Exatas & Tecnol, Grp Informacao Quant & Fis Estat, Campus Reitor Edgard Santos,Rua Bertioga,892, Mora, BR-47810059 Barreiras, BA, Brazil
[2] Jahrom Univ, Coll Sci, Dept Phys, Jahrom 74135111, Iran
[3] Univ Fed Fluminense, Inst Fis, Ave Gal Milton Tavares Souza S-N, BR-24210346 Niteroi, RJ, Brazil
[4] Univ Seville, Dept Fis Mat Condensada, Apdo 1065, Seville 41080, Spain
关键词
quantum heat engines and refrigerators; quantum thermodynamics; metal complexes; OTTO; CARNOT;
D O I
10.1088/2058-9565/accd91
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Low-dimensional metal complexes are versatile materials with tunable physical and chemical properties that make these systems promising platforms for caloric applications. In this context, this work proposes a quantum Stirling cycle based on a dinuclear metal complex as a working substance. The results show that the quantum cycle operational modes can be managed when considering the change in the magnetic coupling of the material and the temperature of the reservoirs. Moreover, magnetic susceptibility can be used to characterize the heat exchanges of each cycle step and, therefore, its performance. As a proof of concept, the efficiency of the heat engine is obtained from experimental susceptibility data. These results open doors for studying quantum thermodynamic cycles by using metal complexes; and further the development of emerging quantum technologies based on these advanced materials.
引用
收藏
页数:16
相关论文
共 67 条
[21]   Quantum battery based on quantum discord at room temperature [J].
Cruz, Clebson ;
Anka, Maron F. ;
Reis, Mario S. ;
Bachelard, Romain ;
Santos, Alan C. .
QUANTUM SCIENCE AND TECHNOLOGY, 2022, 7 (02)
[22]   Shortening time scale to reduce thermal effects in quantum transistors [J].
de Ponte, M. A. ;
Santos, Alan C. .
SCIENTIFIC REPORTS, 2019, 9 (1)
[23]   Efficiency of Harmonic Quantum Otto Engines at Maximal Power [J].
Deffner, Sebastian .
ENTROPY, 2018, 20 (11)
[24]   First-Principles Investigation of the Structural, Elastic, Electronic, and Optical Properties of α- and β-SrZrS3: Implications for Photovoltaic Applications [J].
Eya, Henry Igwebuike ;
Ntsoenzok, Esidor ;
Dzade, Nelson Y. .
MATERIALS, 2020, 13 (04)
[25]   Sensitive magnetometry in challenging environments [J].
Fu, Kai-Mei C. ;
Iwata, Geoffrey Z. ;
Wickenbrock, Arne ;
Budker, Dmitry .
AVS QUANTUM SCIENCE, 2020, 2 (04)
[26]   Molecular spins for quantum computation [J].
Gaita-Arino, A. ;
Luis, F. ;
Hill, S. ;
Coronado, E. .
NATURE CHEMISTRY, 2019, 11 (04) :301-309
[27]   Finite-time quantum Stirling heat engine [J].
Hamedani Raja, S. ;
Maniscalco, S. ;
Paraoanu, G. S. ;
Pekola, J. P. ;
Lo Gullo, N. .
NEW JOURNAL OF PHYSICS, 2021, 23 (03)
[28]   Quantum criticality of spinons [J].
He, Feng ;
Jiang, Yuzhu ;
Yu, Yi-Cong ;
Lin, H. -Q. ;
Guan, Xi-Wen .
PHYSICAL REVIEW B, 2017, 96 (22)
[29]   Quantum correlations and thermodynamic performances of two-qubit engines with local and common baths [J].
Hewgill, Adam ;
Ferraro, Alessandro ;
De Chiara, Gabriele .
PHYSICAL REVIEW A, 2018, 98 (04)
[30]   Quantum Stirling heat engine and refrigerator with single and coupled spin systems [J].
Huang, Xiao-Li ;
Niu, Xin-Ya ;
Xiu, Xiao-Ming ;
Yi, Xue-Xi .
EUROPEAN PHYSICAL JOURNAL D, 2014, 68 (02)