Thermochemical energy storage in barium carbonate enhanced by iron(iii) oxide

被引:5
作者
Williamson, Kyran [1 ]
Moller, Kasper T. T. [1 ,2 ]
D'Angelo, Anita M. M. [3 ]
Humphries, Terry D. D. [1 ]
Paskevicius, Mark [1 ]
Buckley, Craig E. E. [1 ]
机构
[1] Curtin Univ, Phys & Astron, GPO Box U1987, Perth, WA 6845, Australia
[2] Aarhus Univ, Dept Biol & Chem Engn, Aabogade 40, DK-8200 Aarhus, Denmark
[3] Australian Synchrotron, 800 Blackburn Rd, Clayton, Vic 3168, Australia
基金
澳大利亚研究理事会;
关键词
CONCENTRATED SOLAR POWER; TEMPERATURE; CALCIUM; DECOMPOSITION; KINETICS; PLANTS; BACO3;
D O I
10.1039/d2cp05745j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Renewable energy requires cost effective and reliable storage to compete with fossil fuels. This study introduces a new reactive carbonate composite (RCC) where Fe2O3 is used to thermodynamically destabilise BaCO3 and reduce its decomposition temperature from 1400 degrees C to 850 degrees C, which is more suitable for thermal energy storage applications. Fe2O3 is consumed on heating to form BaFe12O19, which is a stable Fe source for promoting reversible CO2 reactions. Two reversible reaction steps were observed that corresponded to, first, the reaction between beta-BaCO3 and BaFe12O19, and second, between gamma-BaCO3 and BaFe12O19. The thermodynamic parameters were determined to be Delta H = 199 +/- 6 kJ mol(-1) of CO2, Delta S = 180 +/- 6 J K-1 mol(-1) of CO2 and Delta H = 212 +/- 6 kJ mol(-1) of CO2, Delta S = 185 +/- 7 J K-1 mol(-1) of CO2, respectively, for the two reactions. Due to the low-cost and high gravimetric and volumetric energy density, the RCC is demonstrated to be a promising candidate for next generation thermal energy storage.
引用
收藏
页码:7268 / 7277
页数:10
相关论文
共 58 条
[41]   Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics [J].
Pullar, Robert C. .
PROGRESS IN MATERIALS SCIENCE, 2012, 57 (07) :1191-1334
[42]   Thermodynamic properties of ternary oxides in the system Ba-Fe-O using solid-state electrochemical cells with oxide and fluoride ion conducting electrolytes [J].
Rakshit, SK ;
Parida, SC ;
Singh, Z ;
Prasad, R ;
Venugopal, V .
JOURNAL OF SOLID STATE CHEMISTRY, 2004, 177 (4-5) :1146-1156
[43]  
Rhodes NR, 2015, CHEMSUSCHEM, V8, P3793, DOI [10.1002/cssc.201501456, 10.1002/cssc.201501023]
[44]   The Rietveld method [J].
Rietveld, Hugo M. .
PHYSICA SCRIPTA, 2014, 89 (09)
[45]   A review of mineral carbonation technologies to sequester CO2 [J].
Sanna, A. ;
Uibu, M. ;
Caramanna, G. ;
Kuusik, R. ;
Maroto-Valer, M. M. .
CHEMICAL SOCIETY REVIEWS, 2014, 43 (23) :8049-8080
[46]   Role of calcium looping conditions on the performance of natural and synthetic Ca-based materials for energy storage [J].
Sarrion, Beatriz ;
Perejon, Antonio ;
Sanchez-Jimenez, Pedro E. ;
Perez-Maqueda, Luis A. ;
Manuel Valverde, Jose .
JOURNAL OF CO2 UTILIZATION, 2018, 28 :374-384
[47]   On the Multicycle Activity of Natural Limestone/Dolomite for Thermochemical Energy Storage of Concentrated Solar Power [J].
Sarrion, Beatriz ;
Manuel Valverde, Jose ;
Perejon, Antonio ;
Perez-Maqueda, Luis A. ;
Sanchez-Jimenez, Pedro E. .
ENERGY TECHNOLOGY, 2016, 4 (08) :1013-1019
[48]   Methods for accurate high-temperature Sieverts-type hydrogen measurements of metal hydrides [J].
Sheppard, Drew A. ;
Paskevicius, Mark ;
Javadian, Payam ;
Davies, Ian J. ;
Buckley, Craig E. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 787 :1225-1237
[49]  
Singh V. P., 2018, WORLD J CONDENS MATT, V08, P36, DOI https://doi.org/10.4236/wjcmp.2018.82004
[50]  
Srivastava R., 2012, Int. J. Green Nanotechnol. Biomed, V4, P141, DOI [10.1080/19430892.2012.676918, DOI 10.1080/19430892.2012.676918]