More Persuasive Explanation Method for End-to-End Driving Models

被引:2
|
作者
Zhang, Chenkai [1 ]
Deguchi, Daisuke [1 ]
Okafuji, Yuki [2 ]
Murase, Hiroshi [1 ]
机构
[1] Nagoya Univ, Grad Sch Informat, Nagoya 4648601, Japan
[2] CyberAgent Inc, AI Lab, Tokyo 1506121, Japan
基金
日本学术振兴会; 日本科学技术振兴机构;
关键词
Task analysis; Predictive models; Pipelines; Autonomous vehicles; Computational modeling; Autonomous driving; Convolutional neural networks; convolutional neural network; end-to-end model; explainability;
D O I
10.1109/ACCESS.2023.3235739
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the rapid development of autonomous driving technology, a variety of high-performance end-to-end driving models (E2EDMs) are being proposed. In order to understand the computational methods of E2EDMs, pixel-level explanations methods are used to obtain the explanations of the E2EDMs. However, little attention has been paid to the excellence of the explanations of E2EDMs. Therefore, in order to build trustworthy E2EDMs, we focus on improving the persuasibility of the explanations of E2EDMs. We propose an object-level explanation method (main approach) for E2EDMs, which masks the objects in the image and then treats the change in the prediction result as the importance of the objects, then we explain the E2EDM by the importance of each object. To further validate the effectiveness of object-level explanations, we propose another approach (validation approach), which trains E2EDMs with object information as input and generates the importance of objects using general explanation methods. Both approaches generate object-level explanations, in order to compare these object-level explanations with traditional pixel-level explanations, we propose experimental methods to measure the persuasibility of explanations of E2EDMs through a subjective and objective method. The subjective method evaluates persuasibility based on the extent to which participants think the importance of features indicated by the explanations is correct. The objective method evaluates the persuasibility based on the human annotation similarity between provided with only the important part of images and provided with the complete images. The experimental results show that the object-level explanations are more persuasive than the traditional pixel-level explanations.
引用
收藏
页码:4270 / 4282
页数:13
相关论文
共 50 条
  • [1] Toward Explainable End-to-End Driving Models via Simplified Objectification Constraints
    Zhang, Chenkai
    Deguchi, Daisuke
    Chen, Jialei
    Murase, Hiroshi
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (10) : 14521 - 14534
  • [2] Refined Objectification for Improving End-to-End Driving Model Explanation Persuasibility
    Zhang, Chenkai
    Deguchi, Daisuke
    Murase, Hiroshi
    2023 IEEE INTELLIGENT VEHICLES SYMPOSIUM, IV, 2023,
  • [3] A Survey of End-to-End Driving: Architectures and Training Methods
    Tampuu, Ardi
    Matiisen, Tambet
    Semikin, Maksym
    Fishman, Dmytro
    Muhammad, Naveed
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (04) : 1364 - 1384
  • [4] End-to-End Autonomous Driving: Challenges and Frontiers
    Chen, Li
    Wu, Penghao
    Chitta, Kashyap
    Jaeger, Bernhard
    Geiger, Andreas
    Li, Hongyang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (12) : 10164 - 10183
  • [5] End-to-End Autonomous Driving in CARLA: A Survey
    Al Ozaibi, Youssef
    Hina, Manolo Dulva
    Ramdane-Cherif, Amar
    IEEE ACCESS, 2024, 12 : 146866 - 146900
  • [6] A Review of End-to-End Autonomous Driving in Urban Environments
    Coelho, Daniel
    Oliveira, Miguel
    IEEE ACCESS, 2022, 10 : 75296 - 75311
  • [7] Multimodal End-to-End Autonomous Driving
    Xiao, Yi
    Codevilla, Felipe
    Gurram, Akhil
    Urfalioglu, Onay
    Lopez, Antonio M.
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (01) : 537 - 547
  • [8] Recent Advancements in End-to-End Autonomous Driving Using Deep Learning: A Survey
    Chib, Pranav Singh
    Singh, Pravendra
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2024, 9 (01): : 103 - 118
  • [9] Learning Driving Models From Parallel End-to-End Driving Data Set
    Chen, Long
    Wang, Qing
    Lu, Xiankai
    Cao, Dongpu
    Wang, Fei-Yue
    PROCEEDINGS OF THE IEEE, 2020, 108 (02) : 262 - 273
  • [10] Hierarchical Interpretable Imitation Learning for End-to-End Autonomous Driving
    Teng, Siyu
    Chen, Long
    Ai, Yunfeng
    Zhou, Yuanye
    Xuanyuan, Zhe
    Hu, Xuemin
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2023, 8 (01): : 673 - 683