Principal graph embedding convolutional recurrent network for traffic flow prediction

被引:10
|
作者
Han, Yang [1 ]
Zhao, Shengjie [1 ,2 ,3 ]
Deng, Hao [1 ]
Jia, Wenzhen [1 ]
机构
[1] Tongji Univ, Sch Software Engn, Shanghai, Peoples R China
[2] Key Lab Embedded Syst & Serv Comp, Shanghai, Peoples R China
[3] Engn Res Ctr Key Software Technol Smart City Perce, Minist Educ, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Data drift; Principal component analysis; Graph convolution network; GRU; Traffic flow prediction;
D O I
10.1007/s10489-022-04211-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As an essential part of traffic management, traffic flow prediction attracts worldwide attention to intelligent traffic systems (ITSs). Complicated spatial dependencies due to the well-connected road networks and time-varying traffic dynamics make this problem extremely challenging. Recent works have focused on modeling this complicated spatial-temporal dependence through graph neural networks with a fixed weighted graph or an adaptive adjacency matrix. However, fixed graph methods cannot address data drift due to changes in the road network structure, and adaptive methods are time consuming and prone to be overfitting because the learning algorithm thoroughly optimizes the adaptive matrix. To address this issue, we propose a principal graph embedding convolutional recurrent network (PGECRN) for accurate traffic flow prediction. First, we propose the adjacency matrix graph embedding (AMGE) generation algorithm to solve the data drift problem. AMGE can model the distribution of spatiotemporal series after data drift by extracting the principal components of the original adjacency matrix and performing an adaptive transformation. At the same time, it has fewer parameters, alleviating overfitting. Then, except for the essential spatial correlations, traffic flow data are also temporally dynamic. We utilize temporal variation by integrating gated recurrent units (GRU) and AMGE to comprise the proposed model. Finally, PGECRN is evaluated on two real-world highway datasets, PeMSD4 and PeMSD8. Compared with the existing baselines, the better prediction accuracy of our model shows that it can accurately and efficiently model traffic flow.
引用
收藏
页码:17809 / 17823
页数:15
相关论文
共 50 条
  • [1] Principal graph embedding convolutional recurrent network for traffic flow prediction
    Yang Han
    Shengjie Zhao
    Hao Deng
    Wenzhen Jia
    Applied Intelligence, 2023, 53 : 17809 - 17823
  • [2] GECRAN: Graph embedding based convolutional recurrent attention network for traffic flow prediction
    Yan, Jianqiang
    Zhang, Lin
    Gao, Yuan
    Qu, Boting
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 256
  • [3] Gated Recurrent Graph Convolutional Attention Network for Traffic Flow Prediction
    Feng, Xiaoyuan
    Chen, Yue
    Li, Hongbo
    Ma, Tian
    Ren, Yilong
    SUSTAINABILITY, 2023, 15 (09)
  • [4] Extended Multi-Component Gated Recurrent Graph Convolutional Network for Traffic Flow Prediction
    Zhao, Junhui
    Xiong, Xincheng
    Zhang, Qingmiao
    Wang, Dongming
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (05) : 4634 - 4644
  • [5] Traffic Flow Prediction Model Based on the Combination of Improved Gated Recurrent Unit and Graph Convolutional Network
    Zhao, Yun
    Han, Xue
    Xu, Xing
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 10
  • [6] ADGCN: An Asynchronous Dilation Graph Convolutional Network for Traffic Flow Prediction
    Qi, Tao
    Li, Guanghui
    Chen, Lingqiang
    Xue, Yanming
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (05) : 4001 - 4014
  • [7] Temporal Multi-Graph Convolutional Network for Traffic Flow Prediction
    Lv, Mingqi
    Hong, Zhaoxiong
    Chen, Ling
    Chen, Tieming
    Zhu, Tiantian
    Ji, Shouling
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (06) : 3337 - 3348
  • [8] Interactive dynamic diffusion graph convolutional network for traffic flow prediction
    Zhang, Shuai
    Yu, Wangzhi
    Zhang, Wenyu
    INFORMATION SCIENCES, 2024, 677
  • [9] Traffic flow prediction based on graph convolutional networks with a parallel attention network and stacked gate recurrent units
    Dawen Xia
    Yuce Ao
    Xiaoduo Wei
    Yunsong Li
    Yan Chen
    Yang Hu
    Yantao Li
    Huaqing Li
    Multimedia Tools and Applications, 2025, 84 (15) : 14329 - 14358
  • [10] STTD: spatial-temporal transformer with double recurrent graph convolutional cooperative network for traffic flow prediction
    Zeng, Hui
    Cui, Qiang
    Huang, XiaoHui
    Duan, XueWei
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (09): : 12069 - 12089