Bayesian Coherence Analysis for Microcircuit Structure Learning

被引:1
作者
Chen, Rong [1 ]
机构
[1] Univ Maryland, Sch Med, Dept Diagnost Radiol & Nucl Med, 100 N Greene, Baltimore, MD 21201 USA
关键词
Microcircuit; Structure learning; Markov blanket; Bayesian network; Markov network; NETWORKS; DYNAMICS;
D O I
10.1007/s12021-022-09608-0
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Functional microcircuits model the coordinated activity of neurons and play an important role in physiological computation and behaviors. Most existing methods to learn microcircuit structures are correlation-based and often generate dense microcircuits that cannot distinguish between direct and indirect association. We treat microcircuit structure learning as a Markov blanket discovery problem and propose Bayesian Coherence Analysis (BCA) which utilizes a Bayesian network architecture called Bayesian network with inverse-tree structure to efficiently and effectively detect Markov blankets for high-dimensional neural activity data. BCA achieved balanced sensitivity and specificity on simulated data. For the real-world anterior lateral motor cortex study, BCA identified microcircuit subtypes that predicted trial types with an accuracy of 0.92. BCA is a powerful method for microcircuit structure learning.
引用
收藏
页码:195 / 204
页数:10
相关论文
共 22 条
[1]   Dynamics of population code for working memory in the prefrontal cortex [J].
Baeg, EH ;
Kim, YB ;
Huh, K ;
Mook-Jung, I ;
Kim, HT ;
Jung, MW .
NEURON, 2003, 40 (01) :177-188
[2]   Graphical-model-based morphometric analysis [J].
Chen, R ;
Herskovits, EH .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2005, 24 (10) :1237-1248
[3]  
Chen R. T., 2005, PROCEEDING 11 ACM SI, P4, DOI [10.1145/1081870.1081875, DOI 10.1145/1081870.1081875]
[4]   Causal Network Inference for Neural Ensemble Activity [J].
Chen, Rong .
NEUROINFORMATICS, 2021, 19 (03) :515-527
[5]  
Chen R, 2018, 2018 IEEE INTERNATIONAL CONFERENCE ON CYBORG AND BIONIC SYSTEMS (CBS), P397, DOI 10.1109/CBS.2018.8612236
[6]   Temporal encoding of place sequences by hippocampal cell assemblies [J].
Dragoi, G ;
Buzsáki, G .
NEURON, 2006, 50 (01) :145-157
[7]   Behavior-dependent short-term assembly dynamics in the medial prefrontal cortex [J].
Fujisawa, Shigeyoshi ;
Amarasingham, Asohan ;
Harrison, Matthew T. ;
Buzsaki, Gyoergy .
NATURE NEUROSCIENCE, 2008, 11 (07) :823-833
[8]   Organization of cell assemblies in the hippocampus [J].
Harris, KD ;
Csicsvari, J ;
Hirase, H ;
Dragoi, G ;
Buzsáki, G .
NATURE, 2003, 424 (6948) :552-556
[9]   LEARNING BAYESIAN NETWORKS - THE COMBINATION OF KNOWLEDGE AND STATISTICAL-DATA [J].
HECKERMAN, D ;
GEIGER, D ;
CHICKERING, DM .
MACHINE LEARNING, 1995, 20 (03) :197-243
[10]   Random Fields in Physics, Biology and Data Science [J].
Hernandez-Lemus, Enrique .
FRONTIERS IN PHYSICS, 2021, 9