Multiplicity of Normalized Solutions for Schrodinger Equation with Mixed Nonlinearity

被引:2
作者
Xu, Lin [1 ]
Song, Changxiu [1 ]
Xie, Qilin [1 ]
机构
[1] Guangdong Univ Technol, Sch Math & Stat, Guangzhou 510520, Guangdong, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2024年 / 28卷 / 03期
关键词
normalized solutions; minimization; truncated argument; mixed nonlinearities; STANDING WAVES; GROUND-STATES; BIFURCATION; STABILITY;
D O I
10.11650/tjm/240202
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we explore the multiplicity of normalized solutions for Schrodinger equation with mixed nonlinearities {Delta-u + V (epsilon x)u = lambda u + mu|u|(q-2)u + |u|(p-2)u in R-N, integral( )(RN)|u|(2) dx = c, where mu > 0, c > 0, 2 < q < 2 + 4/N < p < 2N/(N - 2), N >= 3, epsilon > 0 is a parameter and lambda E R is an unknown parameter that appears as a Lagrange multiplier. The potential V is a bounded and continuous nonnegative function, satisfying some suitable global conditions. By employing the minimization techniques and the truncated argument, we obtain that the number of normalized solutions is not less than the number of global minimum points of V when the parameter epsilon is sufficiently small.
引用
收藏
页码:589 / 609
页数:21
相关论文
共 41 条
  • [1] Alves C. O., 2022, J GEOM ANAL, V32
  • [2] Alves C. O., ARXIV
  • [3] Alves CO, 2022, Z ANGEW MATH PHYS, V73, DOI 10.1007/s00033-022-01741-9
  • [4] Ambrosio V, 2021, Z ANGEW MATH PHYS, V72, DOI 10.1007/s00033-020-01466-7
  • [5] [Anonymous], 2022, CALC VAR PARTIAL DIF, V61
  • [6] Baldelli L., ARXIV
  • [7] Existence of solutions for critical (p, q)-Laplacian equations in RN
    Baldelli, Laura
    Filippucci, Roberta
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2023, 25 (05)
  • [8] Baldelli L, 2021, CALC VAR PARTIAL DIF, V60, DOI 10.1007/s00526-020-01867-6
  • [9] Normalized solutions of mass supercritical Schrodinger equations with potential
    Bartsch, Thomas
    Molle, Riccardo
    Rizzi, Matteo
    Verzini, Gianmaria
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2021, 46 (09) : 1729 - 1756
  • [10] Multiple normalized solutions for a competing system of Schrodinger equations
    Bartsch, Thomas
    Soave, Nicola
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (01)