High-concentration silver alloying and steep back-contact gallium grading enabling copper indium gallium selenide solar cell with 23.6% efficiency

被引:190
作者
Keller, Jan [1 ]
Kiselman, Klara [1 ]
Donzel-Gargand, Olivier [1 ]
Martin, Natalia M. [1 ]
Babucci, Melike [1 ]
Lundberg, Olle [2 ]
Wallin, Erik [2 ]
Stolt, Lars [1 ]
Edoff, Marika [1 ]
机构
[1] Uppsala Univ, Dept Mat Sci & Engn, Div Solar Cell Technol, Angstrom Lab, Uppsala, Sweden
[2] Evolar AB, Solar European Technol Ctr AB 1, Uppsala, Sweden
基金
瑞典研究理事会;
关键词
CU(IN; GA)SE-2; THIN-FILMS; ELECTRONIC-PROPERTIES; GRAIN-BOUNDARIES; (AG; CU)(IN; PHOTOCURRENT; DEPOSITION; HETEROJUNCTION; BUFFER; LAYERS;
D O I
10.1038/s41560-024-01472-3
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Chalcopyrite-based solar cells have reached an efficiency of 23.35%, yet further improvements have been challenging. Here we present a 23.64% certified efficiency for a (Ag,Cu)(In,Ga)Se2 solar cell, achieved through the implementation of a series of strategies. We introduce a relatively high amount of silver ([Ag]/([Ag] + [Cu]) = 0.19) into the absorber and implement a 'hockey stick'-like gallium profile with a high concentration of Ga close to the molybdenum back contact and a lower, constant concentration in the region closer to the CdS buffer layer. This kind of elemental profile minimizes lateral and in-depth bandgap fluctuations, reducing losses in open-circuit voltage. In addition, the resulting bandgap energy is close to the local optimum of 1.15 eV. We apply a RbF post-deposition treatment that leads to the formation of a Rb-In-Se phase, probably RbInSe2, passivating the absorber surface. Finally, we discuss future research directions to reach 25% efficiency. Keller et al. use high-concentration silver alloying and steep gallium grading close to the back contact to minimize bandgap fluctuations and thus voltage losses, achieving 23.6% certified efficiency in Cu(In,Ga)Se2 solar cells.
引用
收藏
页码:467 / 478
页数:15
相关论文
共 66 条
[1]   Formation and characterisation of MoSe2 for Cu(In,Ga)Se2 based solar cells [J].
Abou-Ras, D ;
Kostorz, G ;
Bremaud, D ;
Kälin, M ;
Kurdesau, FV ;
Tiwari, AN ;
Döbeli, M .
THIN SOLID FILMS, 2005, 480 :433-438
[2]   Alkali Dispersion in (Ag,Cu)(In,Ga)Se2 Thin Film Solar Cells-Insight from Theory and Experiment [J].
Aboulfadl, Hisham ;
Sopiha, Kostiantyn, V ;
Keller, Jan ;
Larsen, Jes K. ;
Scragg, Jonathan J. S. ;
Persson, Clas ;
Thuvander, Mattias ;
Edoff, Marika .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (06) :7188-7199
[3]   Impact of compositional grading and overall Cu deficiency on the near-infrared response in Cu(In, Ga)Se2 solar cells [J].
Avancini, Enrico ;
Carron, Romain ;
Bissig, Benjamin ;
Reinhard, Patrick ;
Menozzi, Roberto ;
Sozzi, Giovanna ;
Di Napoli, Simone ;
Feurer, Thomas ;
Nishiwaki, Shiro ;
Buecheler, Stephan ;
Tiwari, Ayodhya N. .
PROGRESS IN PHOTOVOLTAICS, 2017, 25 (03) :233-241
[4]  
Carron R., 2022, PREPRINT VERSION 1 A, DOI [10.21203/rs.3.rs-2116168/v1, DOI 10.21203/RS.3.RS-2116168/V1]
[5]   Advanced Alkali Treatments for High-Efficiency Cu(In,Ga)Se2 Solar Cells on Flexible Substrates [J].
Carron, Romain ;
Nishiwaki, Shiro ;
Feurer, Thomas ;
Hertwig, Ramis ;
Avancini, Enrico ;
Lockinger, Johannes ;
Yang, Shih-Chi ;
Buecheler, Stephan ;
Tiwari, Ayodhya N. .
ADVANCED ENERGY MATERIALS, 2019, 9 (24)
[6]   Impact of Urbach energy on open-circuit voltage deficit of thin-film solar cells [J].
Chantana, Jakapan ;
Kawano, Yu ;
Nishimura, Takahito ;
Mavlonov, Abdurashid ;
Minemoto, Takashi .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2020, 210
[7]   The Comparison of (Ag,Cu)(In,Ga)Se2 and Cu(In,Ga)Se2 Thin Films Deposited by Three-Stage Coevaporation [J].
Chen, Lei ;
Lee, JinWoo ;
Shafarman, William N. .
IEEE JOURNAL OF PHOTOVOLTAICS, 2014, 4 (01) :447-451
[8]   Band-structure anomalies of the chalcopyrite semiconductors CuGaX2 versus AgGaX2 (X=S and Se) and their alloys [J].
Chen, Shiyou ;
Gong, X. G. ;
Wei, Su-Huai .
PHYSICAL REVIEW B, 2007, 75 (20)
[9]  
Chirila A, 2013, NAT MATER, V12, P1107, DOI [10.1038/NMAT3789, 10.1038/nmat3789]
[10]  
Chirila A, 2011, NAT MATER, V10, P857, DOI [10.1038/NMAT3122, 10.1038/nmat3122]