Integrating machine learning and genome editing for crop improvement

被引:8
作者
Chen, Long [1 ,2 ]
Liu, Guanqing [1 ,2 ]
Zhang, Tao [1 ,2 ]
机构
[1] Yangzhou Univ, Jiangsu Key Lab Crop Genom & Mol Breeding, Zhongshan Biol Breeding Lab, Agr Coll ,Key Lab Plant Funct Genom,Minist Educ, Yangzhou 225009, Peoples R China
[2] Yangzhou Univ, Jiangsu Coinnovat Ctr Modern Prod Technol Grain Cr, Jiangsu Key Lab Crop Genet & Physiol, Yangzhou 225009, Peoples R China
基金
中国国家自然科学基金;
关键词
Machine learning; Genome editing; Crop improvement; Molecular design breeding; DE-NOVO DOMESTICATION; STRAND BREAK REPAIR; RNA-GUIDED CAS9; PAM COMPATIBILITY; DNA-BINDING; PREDICTION; GENE; CRISPR-CAS9; CLEAVAGE; PROTEIN;
D O I
10.1007/s42994-023-00133-5
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Genome editing is a promising technique that has been broadly utilized for basic gene function studies and trait improvements. Simultaneously, the exponential growth of computational power and big data now promote the application of machine learning for biological research. In this regard, machine learning shows great potential in the refinement of genome editing systems and crop improvement. Here, we review the advances of machine learning to genome editing optimization, with emphasis placed on editing efficiency and specificity enhancement. Additionally, we demonstrate how machine learning bridges genome editing and crop breeding, by accurate key site detection and guide RNA design. Finally, we discuss the current challenges and prospects of these two techniques in crop improvement. By integrating advanced genome editing techniques with machine learning, progress in crop breeding will be further accelerated in the future.
引用
收藏
页码:262 / 277
页数:16
相关论文
共 136 条
[1]   Genome-wide cis-decoding for expression design in tomato using cistrome data and explainable deep learning [J].
Akagi, Takashi ;
Masuda, Kanae ;
Kuwada, Eriko ;
Takeshita, Kouki ;
Kawakatsu, Taiji ;
Ariizumi, Tohru ;
Kubo, Yasutaka ;
Ushijima, Koichiro ;
Uchida, Seiichi .
PLANT CELL, 2022, 34 (06) :2174-2187
[2]   Predicting the mutations generated by repair of Cas9-induced double-strand breaks [J].
Allen, Felicity ;
Crepaldi, Luca ;
Alsinet, Clara ;
Strong, Alexander J. ;
Kleshchevnikov, Vitalii ;
De Angeli, Pietro ;
Palenikova, Petra ;
Khodak, Anton ;
Kiselev, Vladimir ;
Kosicki, Michael ;
Bassett, Andrew R. ;
Harding, Heather ;
Galanty, Yaron ;
Munoz-Martinez, Francisco ;
Metzakopian, Emmanouil ;
Jackson, Stephen P. ;
Parts, Leopold .
NATURE BIOTECHNOLOGY, 2019, 37 (01) :64-+
[3]   Search-and-replace genome editing without double-strand breaks or donor DNA [J].
Anzalone, Andrew V. ;
Randolph, Peyton B. ;
Davis, Jessie R. ;
Sousa, Alexander A. ;
Koblan, Luke W. ;
Levy, Jonathan M. ;
Chen, Peter J. ;
Wilson, Christopher ;
Newby, Gregory A. ;
Raguram, Aditya ;
Liu, David R. .
NATURE, 2019, 576 (7785) :149-+
[4]   Computational redesign of endonuclease DNA binding and cleavage specificity [J].
Ashworth, Justin ;
Havranek, James J. ;
Duarte, Carlos M. ;
Sussman, Django ;
Monnat, Raymond J., Jr. ;
Stoddard, Barry L. ;
Baker, David .
NATURE, 2006, 441 (7093) :656-659
[5]   Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases [J].
Bae, Sangsu ;
Park, Jeongbin ;
Kim, Jin-Soo .
BIOINFORMATICS, 2014, 30 (10) :1473-1475
[6]   Accurate prediction of protein structures and interactions using a three-track neural network [J].
Baek, Minkyung ;
DiMaio, Frank ;
Anishchenko, Ivan ;
Dauparas, Justas ;
Ovchinnikov, Sergey ;
Lee, Gyu Rie ;
Wang, Jue ;
Cong, Qian ;
Kinch, Lisa N. ;
Schaeffer, R. Dustin ;
Millan, Claudia ;
Park, Hahnbeom ;
Adams, Carson ;
Glassman, Caleb R. ;
DeGiovanni, Andy ;
Pereira, Jose H. ;
Rodrigues, Andria V. ;
van Dijk, Alberdina A. ;
Ebrecht, Ana C. ;
Opperman, Diederik J. ;
Sagmeister, Theo ;
Buhlheller, Christoph ;
Pavkov-Keller, Tea ;
Rathinaswamy, Manoj K. ;
Dalwadi, Udit ;
Yip, Calvin K. ;
Burke, John E. ;
Garcia, K. Christopher ;
Grishin, Nick V. ;
Adams, Paul D. ;
Read, Randy J. ;
Baker, David .
SCIENCE, 2021, 373 (6557) :871-+
[7]   Genome-wide chromatin accessibility landscape and dynamics of transcription factor networks during ovule and fiber development in cotton [J].
Bao, Yu ;
Wei, Yangyang ;
Liu, Yuling ;
Gao, Jingjing ;
Cheng, Shuang ;
Liu, Guanqing ;
You, Qi ;
Liu, Peng ;
Lu, Quanwei ;
Li, Pengtao ;
Zhang, Shulin ;
Hu, Nan ;
Han, Yangshuo ;
Liu, Shuo ;
Wu, Yuechao ;
Yang, Qingqing ;
Li, Zhaoguo ;
Ao, Guowei ;
Liu, Fang ;
Wang, Kunbo ;
Jiang, Jiming ;
Zhang, Tao ;
Zhang, Wenli ;
Peng, Renhai .
BMC BIOLOGY, 2023, 21 (01)
[8]   CRISPR provides acquired resistance against viruses in prokaryotes [J].
Barrangou, Rodolphe ;
Fremaux, Christophe ;
Deveau, Helene ;
Richards, Melissa ;
Boyaval, Patrick ;
Moineau, Sylvain ;
Romero, Dennis A. ;
Horvath, Philippe .
SCIENCE, 2007, 315 (5819) :1709-1712
[9]   An operational definition of epigenetics [J].
Berger, Shelley L. ;
Kouzarides, Tony ;
Shiekhattar, Ramin ;
Shilatifard, Ali .
GENES & DEVELOPMENT, 2009, 23 (07) :781-783
[10]   Structural basis for mismatch surveillance by CRISPR-Cas9 [J].
Bravo, Jack P. K. ;
Liu, Mu-Sen ;
Hibshman, Grace N. ;
Dangerfield, Tyler L. ;
Jung, Kyungseok ;
McCool, Ryan S. ;
Johnson, Kenneth A. ;
Taylor, David W. .
NATURE, 2022, 603 (7900) :343-347