Hold out the genome: a roadmap to solving the cis-regulatory code

被引:22
|
作者
de Boer, Carl G. [1 ]
Taipale, Jussi [2 ,3 ,4 ]
机构
[1] Univ British Columbia, Sch Biomed Engn, Vancouver, BC, Canada
[2] Univ Helsinki, Fac Med, Appl Tumor Genom Res Program, Helsinki, Finland
[3] Karolinska Inst, Dept Med Biochem & Biophys, Stockholm, Sweden
[4] Univ Cambridge, Dept Biochem, Cambridge, England
关键词
ENHANCER ACTIVITY MAPS; TRANSCRIPTION FACTORS; SHADOW ENHANCERS; GENE; SEQUENCE; BINDING; EVOLUTION; EXPRESSION; ELEMENTS; MODEL;
D O I
10.1038/s41586-023-06661-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Gene expression is regulated by transcription factors that work together to read cis-regulatory DNA sequences. The 'cis-regulatory code' - how cells interpret DNA sequences to determine when, where and how much genes should be expressed - has proven to be exceedingly complex. Recently, advances in the scale and resolution of functional genomics assays and machine learning have enabled substantial progress towards deciphering this code. However, the cis-regulatory code will probably never be solved if models are trained only on genomic sequences; regions of homology can easily lead to overestimation of predictive performance, and our genome is too short and has insufficient sequence diversity to learn all relevant parameters. Fortunately, randomly synthesized DNA sequences enable testing a far larger sequence space than exists in our genomes, and designed DNA sequences enable targeted queries to maximally improve the models. As the same biochemical principles are used to interpret DNA regardless of its source, models trained on these synthetic data can predict genomic activity, often better than genome-trained models. Here we provide an outlook on the field, and propose a roadmap towards solving the cis-regulatory code by a combination of machine learning and massively parallel assays using synthetic DNA.
引用
收藏
页码:41 / 50
页数:10
相关论文
共 50 条
  • [1] Hold out the genome: a roadmap to solving the cis-regulatory code
    de Boer, Carl G.
    Taipale, Jussi
    NATURE, 2024, 625 (7993) : 41 - 50
  • [2] Deciphering the transcriptional cis-regulatory code
    Yanez-Cuna, J. Omar
    Kvon, Evgeny Z.
    Stark, Alexander
    TRENDS IN GENETICS, 2013, 29 (01) : 11 - 22
  • [3] Ancient cis-regulatory constraints and the evolution of genome architecture
    Irimia, Manuel
    Maeso, Ignacio
    Roy, Scott W.
    Fraser, Hunter B.
    TRENDS IN GENETICS, 2013, 29 (09) : 521 - 528
  • [4] Cis-Regulatory Elements in Mammals
    Liu, Xingyu
    Chen, Mengjie
    Qu, Xiuwen
    Liu, Wenjing
    Dou, Yuting
    Liu, Qingyou
    Shi, Deshun
    Jiang, Mingsheng
    Li, Hui
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (01)
  • [5] Eric Davidson's Regulatory Genome for Computer Science: Causality, Logic, and Proof Principles of the Genomic cis-Regulatory Code
    Istrail, Sorin
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2019, 26 (07) : 653 - 684
  • [6] Genome-wide profiling of angiogenic cis-regulatory elements unravels cis-regulatory SNPs for vascular abnormality
    Jin, Lihui
    Han, Zhenyuan
    Mao, Xiaotong
    Lu, Jieru
    Yan, Bingqian
    Lu, Yiwen
    Liang, Lili
    Wang, Lin
    Yu, Yu
    Sun, Kun
    SCIENTIFIC DATA, 2024, 11 (01)
  • [7] A cis-regulatory map of the Drosophila genome
    Negre, Nicolas
    Brown, Christopher D.
    Ma, Lijia
    Bristow, Christopher Aaron
    Miller, Steven W.
    Wagner, Ulrich
    Kheradpour, Pouya
    Eaton, Matthew L.
    Loriaux, Paul
    Sealfon, Rachel
    Li, Zirong
    Ishii, Haruhiko
    Spokony, Rebecca F.
    Chen, Jia
    Hwang, Lindsay
    Cheng, Chao
    Auburn, Richard P.
    Davis, Melissa B.
    Domanus, Marc
    Shah, Parantu K.
    Morrison, Carolyn A.
    Zieba, Jennifer
    Suchy, Sarah
    Senderowicz, Lionel
    Victorsen, Alec
    Bild, Nicholas A.
    Grundstad, A. Jason
    Hanley, David
    MacAlpine, David M.
    Mannervik, Mattias
    Venken, Koen
    Bellen, Hugo
    White, Robert
    Gerstein, Mark
    Russell, Steven
    Grossman, Robert L.
    Ren, Bing
    Posakony, James W.
    Kellis, Manolis
    White, Kevin P.
    NATURE, 2011, 471 (7339) : 527 - 531
  • [8] Identification of Functional cis-regulatory Polymorphisms in the Human Genome
    Molineris, Ivan
    Schiavone, Davide
    Rosa, Fabio
    Matullo, Giuseppe
    Poli, Valeria
    Provero, Paolo
    HUMAN MUTATION, 2013, 34 (05) : 735 - 742
  • [9] Transcriptional regulation in plants: Using omics data to crack the cis-regulatory code
    Zemlyanskaya, Elena, V
    Dolgikh, Vladislav A.
    Levitsky, Victor G.
    Mironova, Victoria
    CURRENT OPINION IN PLANT BIOLOGY, 2021, 63
  • [10] Multiplex cis-regulatory analysis
    Nam, Jongmin
    ECHINODERMS, PT B, 2019, 151 : 159 - 176