An Interventional Radiologist's Primer of Critical Appraisal of Artificial Intelligence Research

被引:0
|
作者
Gaddum, Olivia [1 ]
Chapiro, Julius [1 ,2 ]
机构
[1] Yale Univ, Dept Radiol & Biomed Imaging, Div Intervent Radiol, Sch Med, New Haven, CT USA
[2] Yale Univ, Dept Radiol & Biomed Imaging, Div Intervent Radiol, Sch Med, 333 Cedar St, New Haven, CT 06510 USA
基金
美国国家卫生研究院;
关键词
MACHINE; PERFORMANCE; ACCURACY; CARE;
D O I
10.1016/j.jvir.2023.09.020
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Recent advances in artificial intelligence (AI) are expected to cause a significant paradigm shift in all digital data-driven aspects of information gain, processing, and decision making in both clinical healthcare and medical research. The field of interventional radiology (IR) will be enmeshed in this innovation, yet the collective IR expertise in the field of AI remains rudimentary because of lack of training. This primer provides the clinical interventional radiologist with a simple guide for critically appraising AI research and products by identifying 12 fundamental items that should be considered: (a) need for AI technology to address the clinical problem, (b) type of applied Al algorithm, (c) data quality and degree of annotation, (d) reporting of accuracy, (e) applicability of standardized reporting, (f) reproducibility of methodology and data transparency, (g) algorithm validation, (h) interpretability, (i) concrete impact on IR, (j) pathway toward translation to clinical practice, (k) clinical benefit and cost-effectiveness, and (l) regulatory framework.
引用
收藏
页码:7 / 14
页数:8
相关论文
共 50 条
  • [1] Artificial Intelligence in Imaging: The Radiologist's Role
    Rubin, Daniel L.
    JOURNAL OF THE AMERICAN COLLEGE OF RADIOLOGY, 2019, 16 (09) : 1309 - 1317
  • [2] Critical appraisal of artificial intelligence-based prediction models for cardiovascular disease
    van Smeden, Maarten
    Heinze, Georg
    Van Calster, Ben
    Asselbergs, Folkert W.
    Vardas, Panos E.
    Bruining, Nico
    de Jaegere, Peter
    Moore, Jason H.
    Denaxas, Spiros
    Boulesteix, Anne-Laure
    Moons, Karel G. M.
    EUROPEAN HEART JOURNAL, 2022, 43 (31) : 2921 - 2930
  • [3] A Primer on Image-guided Radiation Therapy for the Interventional Radiologist
    Kothary, Nishita
    Dieterich, Sonja
    Louie, John D.
    Koong, Albert C.
    Hofmann, Lawrence Vincent
    Sze, Daniel Y.
    JOURNAL OF VASCULAR AND INTERVENTIONAL RADIOLOGY, 2009, 20 (07) : 859 - 862
  • [4] Artificial Intelligence: Practical Primer for Clinical Research in Cardiovascular Disease
    Kagiyama, Nobuyuki
    Shrestha, Sirish
    Farjo, Peter D.
    Sengupta, Partho P.
    JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2019, 8 (17):
  • [5] Artificial Intelligence: A Primer for Breast Imaging Radiologists
    Bahl, Manisha
    JOURNAL OF BREAST IMAGING, 2020, 2 (04) : 304 - 314
  • [6] Artificial Intelligence in Dermatology: A Primer
    Young, Albert T.
    Xiong, Mulin
    Pfau, Jacob
    Keiser, Michael J.
    Wei, Maria L.
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2020, 140 (08) : 1504 - 1512
  • [7] Artificial intelligence in interventional pulmonology
    Ishiwata, Tsukasa
    Yasufuku, Kazuhiro
    CURRENT OPINION IN PULMONARY MEDICINE, 2024, 30 (01) : 92 - 98
  • [8] Health Services Research: A Review for the Interventional Radiologist
    Marchak, Katherine
    Malavia, Mira
    Trivedi, Premal S.
    SEMINARS IN INTERVENTIONAL RADIOLOGY, 2023, 40 (05) : 452 - 460
  • [9] Evaluating artificial intelligence for medical imaging: a primer for clinicians
    Keni, Shivank
    BRITISH JOURNAL OF HOSPITAL MEDICINE, 2024, 85 (07)
  • [10] A primer on artificial intelligence for the paediatric cardiologist
    Gearhart, Addison
    Gaffar, Sharib
    Chang, Anthony C.
    CARDIOLOGY IN THE YOUNG, 2020, 30 (07) : 934 - 945